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ABSTRACT

N
2
O emission from agriculture has been assumed to increase by 30-35% until 2030. This gas has a major contribute

to the emission from agriculture. N
2
O emission from managed soils is the 2nd contributor to green house gas (GHG)

emission from agriculture in Indonesia. Rainfed area requested high management input. This research aimed to
examine N

2
O emission from different crops in the rainfed area and its affecting factors, also to identify things that

need to be considered in conducting N
2
O measurement from managed soil. Research conducted in Pati and Blora

District, Central Java Province.  Four (4) different experimental sites with 4 different crops were chosen. Those were
mung bean, rubber plantation and sugarcane which located within Pati District, and maize crop which located in
Blora District. No treatment was applied. Gas samples were taken following the day after fertilizing. Daily N

2
O fluxes

from managed soil in tropical land of Indonesia determine by several factors, which are: days after fertilizing,
fertilizer type and dosage, previous land use, growth phase of crops, sampling point and soil characteristic. The
peak time was mostly influenced by crop type. Maize has the highest N

2
O daily fluxes with the range of 311.9 - 9651.6

ugN
2
O m-2day-1 and rubber plantation has the lowest with the range of 16.1 - 2270.7 ugN

2
O m-2day-1. Measurement

of N
2
O from managed soil to determine annual emissions should be done at all crop types, soil types, considering

crops growth phase and also high sampling frequency to prevent an over or under estimation.
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Emisi N
2
O dari lahan pertanian diasumsikan akan terus meningkat sebesar 30-35% hingga tahun 2030. Emisi N

2
O dari

tanah yang dikelola adalah penyumbang terbesar kedua emisi gas rumah kaca dari pertanian di Indonesia. Gas ini
berkontribusi  besar terhadap emisi dari pertanian karena praktik budidaya terutama dari pemupukan. N

2
O dihasilkan

dari proses kompleks yang dipengaruhi oleh berbagai kondisi, karena itu variabilitas data sangat tinggi. Daerah
tadah hujan memerlukan input yang tinggi dari pupuk sintetis. Penelitian ini bertujuan untuk mempelajari emisi N

2
O

dari tanaman yang berbeda dan faktor-faktor yang mempengaruhinya, juga untuk mengidentifikasi hal-hal yang
perlu diperhatikan dalam melakukan pengukuran N

2
O dari tanah yang dikelola. Penelitian dilakukan di Kabupaten

Pati dan Blora, Provinsi Jawa Tengah. Empat (4) lahan untuk penelitian dengan 4 tanaman yang berbeda telah dipilih.
Pertanamn kacang hijau, perkebunan karet dan tebu yang terletak di Kabupaten Pati, dan tanaman jagung yang
terletak di Kabupaten Blora.Tidak ada perlakuan yang diterapkan dalam penelitian ini.  Sampel gas diambil mengikuti
hari setelah pemupukan. Fluks N

2
O harian dari tanah yang dikelola di daerah tropis Indonesia ditentukan oleh

beberapa faktor, yaitu: hari setelah pemupukan, jenis pupuk dan dosis, penggunaan lahan sebelumnya, fase
pertumbuhan tanaman, titik sampling serta karakteristik tanah. Waktu puncak sebagian besar dipengaruhi oleh jenis
tanaman. Jagung memiliki fluks harian N

2
O tertinggi dengan kisaran 311,9-9651,6 ug N

2
O m-2 hari-1 dan perkebunan

karet memiliki fluks harian terendah dengan kisaran 16,1-2270,7 ug N
2
O m-2 hari-1. Pengukuran N

2
O dari berbagai

penggunaan lahan dengan tanaman tertentu untuk menentukan emisi tahunan sebaiknya dilakukan harian atau
mingguan selama periode tumbuh tanaman, semua jenis tanah dan juga fase pertumbuhan untuk mencegah over
atau under-estimate.

Kata Kunci: Jenis tanaman, N
2
O, tanah yang dikelola, tadah hujan
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INTRODUCTION

N
2
O has an important role in the climatic system

as well as in the atmospheric ozone layer. N
2
O is a

greenhouse gas (GHG) which potentially resulting
from microbial activity in the process of
denitrification and nitrification in the soil, therefore,
the agricultural system is a major source of
anthropogenic N

2
O emissions (Davidson et al. 1996;

Wrage et al. 2001;Barton et al. 2015). Asia
consumed 58.6% of the total world fertilizer
consumption (FAO 2010). The needs for food and
energy raises along with the raise of human
population, this causes an increase in inorganic N
fertilizer (to improve yield), which in turn led to an
increase of N

2
O emission.  N

2
O emissions resulting

from human activities, has increased by 150 Tg N
yr-1 (Mosier 2002), with global N

2
O concentration

in the atmosphere is 320 ppbv, while in the pre
industrialization was only by 270 ppbv (IPCC 2007),
and this emission from agriculture has been assumed
to increase by 35-60% until 2030 (IPCC 2007).
Stehfest and Bouwman (2006) estimated that the
global annual emissions from fertilized cropland are
3.3 Tg N

2
O-N yr-1.

The emissions depend on the amount and
chemical composition of fertilizer (Baggs et al.
2002;Vallejo et al. 2006), which both affect
denitrification and nitrification. But, the effect of
fertilizer also depends on type of crops, water
regimes, temperature, soil moisture, etc. Commonly,
nitrogen is a limiting nutrients in intensive cropping
systems which applied to rice crops, maize and
perennial crops. However, the relationship between
agronomic management and N

2
O emissions depends

on more than just the amount of N input, it depends
on a complex interaction between climatic factors,
soil properties and soil management (Buchkina et
al. 2013).For both intensive, conventional and low-
input, organic cropping systems, N

2
O emissions are

a dominant factor in the GWP (Robertson et al.
2000; Adviento-Borbe et al. 2007).

Agriculture accounted for about 10-12 % to
global GHG emission, of which 60% are nitrous oxide
(N

2
O) and the rest are methane (CH

4
). Indonesian

Second National Communication (2010) stated that
agriculture as a managed soil contributed for about
79% of the N

2
O emission nationally.Managed soils

as describe in IPCC’s guideline (IPCC 2007) are
soils where human interventions and practiceshave
been applied to perform production, ecological or
social functions and are mostly in aerobic condition.

Indonesia is an agricultural country, of the 200
million ha of land territory, about 50 million ha are
devoted to various agricultural activities (Statistics

Indonesia 2014). There is nearly 20 million ha of
arable land, of which about 40% is wetland (e.g.,
rice fields), 40% is dry land, and 15 % is shifting
cultivation. Depending on the source of water and
the provision of irrigation facilities, land is classified
as technical irrigation areas, semi - technical
irrigation areas, simple irrigation areas, village
irrigation areas, inland and tidal swamp and rainfed
areas. Over 50% of rainfed areas exist in Java
Island. 180.952 ha in West  Java, 268.970 ha in
Central Java and 240.273 ha in East Java.  Rainfed
area is vulnerable to drought (total annual rainfall <
1,500 mm yr-1), has a very low productivity, mostly
because of low quality of soil (low CEC, low C-
content, low N and K) therefore the use of synthetic
fertilizer to improve yield are a must, and sometime
becomes excessive. N

2
O emission from agriculture

is the 6th contributor to GHG emission in Indonesia
(Indonesian Biennial Update Report 2015). There
is still lack of N

2
O emission data from Indonesian

managed soils in rain-fed area.
Therefore, the research of N

2
O measurement

from different crops, different management and also
different sampling time were needed to be done.
The aims of this research were to investigate N

2
O

emission from different crops and factors that
affecting, it also to identify things that were needed
to be consider in conducting N

2
O measurement from

managed soil.

MATERIALS AND METHODS

Site Description

The research was conducted at farmer’s field
in Pati and Blora District from March to November
2013. The selected sites were represents various
crops and cultivated in a large scale. The soil was
classified as Vertisol and  Inceptisol according to
The Soil Taxonomy System of USA (Soil Taxonomy
2014). Altitude in Pati ranges from 10 to 40 m above
sea level, annual mean temperature is 30 oC, and
annual rainfall is in the average of 1503 mm, of which
nearly 70% falls in rainy season (October-March).
As a rainfed region, 100% water supplies are
provided by the rainfall, because irrigation is not
practiced in the region. Meanwhile for the site in
Blora, altitude is 35 m above sea level, the annual
mean temperature is 28 oC, and annual rainfall is in
the average of 1700 mm.

There were 4 different experimental sites with
4 different crops. Those were mungbean, rubber
plantation and sugarcane which was located within
Pati District, and maize crop which was located in
Blora District. Pati and Blora are side by side. The
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selected crops were representing the priority
commodities in Indonesia. The mung bean site was
only cultivated once in a year because it followed
the cropping pattern in the area, which was rice-
mung bean-rice. The sugarcane site was cultivated
in a whole growing season for the last 5 years. Those
were two age type of the rubber plantation: matured
rubber (age above 4 year) and young rubber (age
0-4 year). For the matured rubber, they were on
their fifth growing year when the research was
conducted and for the young rubber, since they were
not yielding yet, the farmer also cultivated cassava
in between the young rubber. The maize site was
cultivated twice in a year. Organic and inorganic
fertilizers were used for all the sites. The description
of fertilizer applied, and the relevant chemical and
physical soil properties are listed in Table 1.

Experimental Designs

In each sampling site, there were no special
treatment, gas sampling were conducted in the
existing farmer site. Before the gas sampling, we
planted an anchor to placing the chamber on each
sampling points. These anchor intended to minimize
the gas leakage.We were using 60 × 20 × 30 cm
polycarbonate chambers, and the anchors were 60
× 30 cm.  For the sugarcane, mung bean and maize
sites, the gas sampling followed the time of
fertilization. Those were 2, 5, 9, 29 and 50 days after
fertilizing for sugarcane site. Sampling points
followed the sugarcane rows, there were 3 points
and then replicated in 4 points backwards. Gas
sampling in mung bean site, were taken at 4 point,
and considered as replication. The sampling time
also followed the time of fertilization, which were
applied once in a week, so the gas sampling was
taken in 2 and 5 days after fertilization in three weeks
in a row, so there were 6 measurements. There were
8 sampling points for the maize site which were
taken at two different types of soil, vertisol and
inceptisol, so there was 4 sampling points each soil
types considered as replication. Sampling time also
followed the time of fertilization, that were 2, 5, 9,
14, 28, and 42 days after fertilization.

Sampling time at rubber plantation was a bit
different than the other site. The gases sampling
did not follow the fertilization time, because when
we conduct the research, there were still no rain,
even if it should be the rainy season, that was why
the farmers had not applied any fertilizer yet. So,
we decided to take the gas samples in every week
for about 5 weeks, only as a baseline emission. The
sampling points were also different. In rubber site,
we took the samples on the plate under the rubber
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and in between the rubbers. We were taking into
account that the fluxes from those two different
points were significantly different, considering there
were any effect from root respiration (but the effect
of root respiration itself, were not our concern in
this research) at the plate under the rubber and also
this place was where the fertilizers were applicated.
For the young rubber, since it was not yielding yet,
as mention previously, farmer also cultivated
cassava in between the plant. The sampling points
were replicated 4 times.

Measurement of N
2
O Fluxes

N
2
O fluxes were measured using static

chamber and gas chromatography techniques
(Wang and Wang 2003). The closed chamber was
made from 4 mm thick acrylic materials consisted
of two parts, a square box (without a bottom, length
× width × height = 60 cm x 20 cm x 30 cm) and an
anchor (length × width = 60 cm × 20 cm). There
were two holes in the top of the box, one hole for
placing the thermometer and the other one was for
gas sampling which was equipped with rubber
septum. The anchor was inserted directly 10 cm
into the soil, and the square box was placed on top
during sampling and it was removed afterwards.
Samples were taken with 20 ml plastic syringes were
attached to a three-way stopcock at 10, 20, 30, 40
and 50 min following chamber closure, respectively,
and then injected into 10 ml evacuated glass vial.
N

2
O concentrations in the samples were analyzed

in the laboratory within 24 hours following sampling
using a gas chromatography (Varian GHG 450
Series, a GC System, Varian, Netherlands). The gas
chromatography was equipped with an electron
capture detector (ECD) for N

2
O analysis. The gas

chromatography configurations for analyzing N
2
O

concentration were at 50oC column temperature,

350 oC ECD temperature and 100 oC injector
temperature. The methods for calculating the gas
flux were the same as those described by IAEA
(1992):

2.273

2.273
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where E is N
2
O flux (mg m-2 min-1), Bm is molecular

weight of N
2
O (g), Vm is molecular volume of N

2
O

at standard temperature and pressure (22,41l), c/
t is changes of N

2
O concentration over time (ppm

per min), V is chamber volume (m3), A is chamber
area (m2) and T is mean air temperature inside the
chamber during gas sampling (oC).

N
2
O flux was calculated based on the rate of

change in N
2
O concentration within the chamber,

which was estimated as the slope of linear
regression between concentration and time. All the
coefficients of determination (R2) of the linear
regression were greater than 0.80 in our study.

Soil Sampling and Analyses

Fresh soil samples (0-20 cm) were taken from
each field, but it was only taken once at all of
measurements time. It was taken at the first gas
sampling. Three sub samples were collected from
each sampling point and composited into one soil
sample, mixed and placed in plastic bags after
manual removal of visible plant residue and roots.
Soil samples were analyzed for soil water content
(oven-drying method), total N (Kjeldahl method),
total C (spectrofotography), particle size distribution
and pH.

Statistical Analysis

The effect of different sampling time, soil types,
growth phase and sampling point were analyzed with
Minitab version 16 Software, the significant effects

Figure 1. Daily N
2
O fluxes from sugarcane site.
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of the treatment were examined by using a two-
way analysis of variance (ANOVA).When
significant differences were detected at P = 0.01,
the mean values were compared by using Tukey’s
pairwise comparison test.

RESULTS AND DISCUSSION

Daily fluxes from sugarcane plantation were
likely to have a trend following the days after
fertilization (DAF). There were small fluxes at 2 and
5 DAF amounted to 485 and 362 ug N

2
O m-2day-1. It

led to a very high increasing at 9 and 29 DAF
amounted to 1955 and 2236 ug N

2
O m-2day-1, and

slowly decreasing at 50 DAF with the amount of
1582 N

2
O m-2day-1 (Figure 1). The fluxes began to

soar after a week of fertilizer application. This is
lower than what Den mead et al. (2010) has
discovered from Australian sugarcane soils.

N
2
O daily fluxes measured from mung-bean site

are presented in Figure 2. The measurements were
conducted at 2 and 5 days following fertilizing in a
growing season. Mean fluxes at 2 DAF were ranged
from 778 – 1488 ug N

2
O m-2day-1, while at 5 DAF

were ranged from 1,370 – 1,906 ug N
2
O m-2day-1

(Figure 2). This resulted that N
2
O fluxes at 2 DAF

were always smaller than those at 5 DAF
measurements. The farmer applied N fertilizer in
liquid form once in a week. The results of the soil
analysis showed the dominant fraction was clay. At

the research site, C/N ratio was more than 10, which
means that the soil organic matter decomposition is
still experiencing. That soil organic matter in question
might be residual roots of rice plants from the
previous crop.

The N inputs for mung bean were very small
actually, it was only 30 kg N ha-1yr-1, but what we
have shown in Figure 2 there was a high N

2
O

emission from the site. What we could presume is
that the emission occurred, due to embedded
biomass from previous season, which was rice. In
aerobic conditions at the root zone, there will be
nitrification forming N

2
O. Increasing soil C contents

in the surface soil appears to increase the risk of
N

2
O emissions from a cropped soil (Barton et al.

2015; Corsi et al. 2012).
As mentioned on methodology, our

measurement at maize site, covered two different
type of soil, inceptisol and vertisol. Apparently, the
emissions from these two soil type were constantly
different. N

2
O emissions from maize at inceptisol

soil tended to be lower than those at vertisol soil.
This was in accordance with our previous research
at rice field (Susilawati et al. 2015). It was likely
that N

2
O production not only determined from water

regimes condition in the farm, but also by soil
characteristic as there were no flooding in maize.
What we could presumed is that vertisol soil with
its characteristic, which physically has a high clay
content led to high N

2
O emission. Clayey soils tend

Figure 2. Daily fluxes from mung bean site.
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to show greater N
2
O emissions than sandy soils

(Brentrup et al. 2000), due to the small amount of
macropores which would increase anaerobic
microsites, that led to increasing N

2
O emissions.

Gas measurement following days after
fertilizing at maize site are presented in Figure 3. It
was high at 2 DAF and continued to decrease until
42 DAF at vertisol soil. This is showed that as
fertilizer applied, the processes involved in
denitrification and nitrification running soon after
(Dobbie et al. 1999). Whilst at inceptisol soil, the
denitrification-nitrification were running slowly until
peaks at 5 DAF and decreased afterwards. Maize
crops only absorbed about 50-60% N input, almost
2 % lost as N

2
O emission (Stevens and Laughlin

1998; Stevens et al. 1997).

The measurement of N
2
O emission at rubber

plantation were determined weekly, without
considering DAF as there was no fertilizer applied
during our measurement. After 5 times
measurement, it resulted that N

2
O flux was

fluctuated for each week, either on the young or
mature rubber. The following figure shows that the
value of the flux on the young rubber is always
higher than the mature. Measurement of N

2
O on 2

October at both locations showed a peak, this was
occurred after rainfall (data not shown). After the
irrigation or rainfall, WFPS increased, making the
conditions conducive for N

2
O production (Ray et

al. 2013), which resulted in high N
2
O emissions.

Many workers have also found that with the
increase in WFPS, soil redox potential becomes

Figure 3. Daily N
2
O emission from maize site.  : vertisol, : inceptisol.

Figure 4.Weekly N
2
O fluxes from mature and young rubber plantation sites.
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favorable for denitrification, and soil microbial
activity increases with a rise in temperature and soil
moisture (Gödde and Conrad 2000; Ding et al. 2007;
Davidson 2009). Many studies have reported that
soil water content expressed as water-filled pore
space above 60% (Dobbie and Smith 2003a; Sehy,
2003) and soil temperature above 10°C (Horváth et
al. 2010; Ma et al. 2010) were conducive to
enhancing N

2
O emissions. Lessard et al. (1996)

noted that a rise in N
2
O fluxes coincided with high

soil NO
3
-N content and high water content following

rainfall.
N

2
O fluxes based on cropping phase difference

are shown in the following figure. The young rubber
turns out produced N

2
O fluxes higher than the mature

rubber, it is very possible because of the influence of

fertilization and also the growth stage itself.  In young
rubber, there was intercropping with cassava plant,
so the influence of fertilization from cassava which
were likely to affect N

2
O flux. While at mature

rubber, the last fertilization were conducted in
February.

As mentioned earlier at methodology, each
sampling site consisted of two points, which were
on the plate under the rubber and in between the
rubbers. Figure 6 shows that N

2
O fluxes on the plate

under the rubber as well as on the side line of rubber
plant on young phase were greater than the mature
one. The fluxes in each phase on the plate were
greater than those between the rubber plants (Figure
6.). This is due to the effect of the fertilizer applied
location, which is usually performed at around the
rubber plate.

Figure 5. N
2
O fluxes from different rubber growth phase.
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Figure 6. N
2
O emission from different sampling points at rubber plantation site.
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As a whole, N
2
O emissions were low for all

crops in Indonesian lowland rain-fed area compared
to boreal agricultural mineral soils in Finland which
were ranged from 0,12 to 12 kg N

2
O-N ha-1year-1

(Regina et al. 2013) and from tropical peatlands in
Kalimantan, annual N

2
O emissions were higher,

ranged from 2,98 to 18,96 kg N
2
O-N ha-1year-1 for

five secondary forest and six agriculture land uses
(Hadi et al. 2002). Fluxes from rubber plantation
were relatively small compare to other measure
crops in this study due to N fertilizer. Application of
mineral N-fertilizers into agricultural soils usually
results in increasing N

2
O emissions (MacKenzie et

al. 1998; Dobbie and Smith et al. 2003b; Jones et
al. 2007; Rizhiya et al. 2011). However, there is
contradictory information on linearity between
applied N rates and N

2
O emissions from soils.

According to results reported by Gregorich et al.
(2005), N

2
O emission from agricultural soils

increased linearly with the applied amount of mineral
N fertilizer. At N rates not exceeding or equal to
those required for maximum yields, N rates tended
to create a linear response in N

2
O emissions, with

approximately 1% of applied mineral N lost as N
2
O

(Bouwman 1996; Halvorson et al. 2008). The
emission from maize were highest among other
crops, due to highest N fertilizer (Table 1), this
coincide with any other study. As for rubber, there
were no fertilizer added prior to the measurement.

Measurement of N
2
O fluxes following days

after fertilizing showed a very different pattern

among crops. Generally, the highest N
2
O fluxes

occurred in the first or second week after application
of N fertilizers to the soil (Liu et al. 2005, 2006;
Schils et al. 2008). According to Zhang and Han
(2008), the effect of fertilization disappears
approximately two months after the application of
N.  At sugarcane site, the peak started to increase
in 9 and 29 DAF then decreased afterwards. While
at mungbean and maize, the fluxes showed a peak
at 5 DAF. One form of N loss that is not absorbed
by plants is N

2
O emissions (Granli and Bockman

1994). After the application of fertilizer and the
absorption ineffective, it will appear on soaring N

2
O

flux and the effect of fertilization disappears
approximately two months after the application of
N. The application of urea will cause a delay time
of N

2
O fluxes compare to ammonium nitrate

fertilizer, as mentioned by Signor and Cerri (2013).
This delay time might be attributed to a reduced
availability of N at the beginning of the experimental
periods, since the N in urea has to be hydrolyzed
before being available for nitrification and
denitrification processes.

N
2
O flux from agricultural soils depends on a

complex interaction between climatic factors,soil
properties and soil management (Henault et al.
1998).  The proportion of N

2
O in the total flux of N

gases emitted from soils is also influenced by soil
type (Stevens and Laughlin 1998). Clayey soils tend
to show greater N

2
O emissions than sandy soils

(Brentrup et al. 2000), and N management may

Table 2. Significance of the impacts of sampling time, soil type, growth
phase and sampling point on N

2
O emission from different crops

in Central Java.

Crops
Sampling time

(DAF)
Soil type

Growth
phase

Sampling
point

Sugarcane ** no no ns
Maize ** ** ns
Mung bean * no no ns
Rubber plantation ns no ** ns

1

Table 3. Mean and range of N
2
O emission among different

crops in Central Java.

Crops
(ug N2O m-2day-1)

Mean Range
Sugarcane 1371.4b 90.9 - 8919.5
Maize 3107.6a 311.9 - 9651.6
Mung bean 1326.4bc 227.0 - 3638.9
Rubber plantation 519.1c 16.1 - 2270.7

1
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increase the emission of N
2
O, particularly in soils

of fine texture and without mobilization before
seeding (Chen et al. 2008, Tan et al. 2009). N

2
O

emissions induced by soil management practices and
by rain were four times greater in a clay loam soil
than in a loamy sand (Tan et al. 2009).  This
occurred in our measurement at maize with two
different type of soil. Apparently, the emission from
vertisol (high clay soil) was bigger than that from
inceptisol (a sandy loam soil). Neill et al. (2005)
reported that emissions in sandy soils occur with
greater soil moisture than that necessary for similar
emissions in a clayey soil.  The fluxes from mung
bean site were quite high due to previous crop
residue. The higher soil moisture, due to the crop
residue in (Baggs et al. 2006), can increase
microbial activity near the soil surface, consuming
the available O

2
and creating anaerobic microsites.

Liu et al. (2011) studied N
2
O emissions in a crop

rotation system, in China, and showed that the
incorporation of maize and wheat straw significantly
increased the soil temperature, due to their heat-
retaining property. The biochemical composition of
plant residues added to the soil is responsible for
higher or lower N

2
O emissions (Gomes et al. 2009),

because the maintenance of straw on the soil
surface affects the N mobilization and immobilization
and, consequently, the N availability in the soil, and
also the nitrification and denitrification processes.

Growth stage also led to significantly different
emissions, as we found out in measurement at rubber
plantation. Earlier studies have established that
higher amount of photosynthesized carbon is
allocated to roots during the vegetative growth
stages (Fu et al. 2002; Meng et al. 2013). Increase
in available carbon leads to higher activity of
denitrifying soil microbes, which causes higher N

2
O

emissions (Qian et al. 1997; Sey et al. 2010).

CONCLUSIONS

Nitrous oxide measurements at different site
of crops, showed a very different value. Different
crops resulted in different N

2
O emission due to

differences in management, agronomical and
environmental factors. Measurement following the
days after fertilizer application showed different
pattern among different crops. What we could be
concluded that daily N

2
O fluxes from managed soil

ofrain-fed lowland in Indonesia determine by several
factors, which were days after fertilizing, fertilizer
type and dosage, previous land use, growth phase
of crops, sampling point and soil characteristic. The
peak time mostly influenced by crop types.Maize

Crops
Sampling time

(DAF)
Soil type

Growth
phase

Sampling
point

Sugarcane ** no no ns
Maize ** ** ns
Mung bean * no no ns
Rubber plantation ns no ** ns

1

Crops
(ug N2O m-2day-1)

Mean Range
Sugarcane 1371.4b 90.9 - 8919.5
Maize 3107.6a 311.9 - 9651.6
Mung bean 1326.4bc 227.0 - 3638.9
Rubber plantation 519.1c 16.1 - 2270.7

1

has the highest N
2
O daily fluxes with the range of

311.9 - 9651.6 ugN
2
O m-2day-1 and rubber plantation

has the lowest with the range of 16.1 - 2270.7 ug
N

2
O m-2day-1. This showed that GHG emissions

were having a very high variability in spatial and
temporal. Measurement of N

2
O from managed soil

to determine annual emissions should be done at all
crop types, soil types, considering crops growth phase
and also high sampling frequency to prevent an over-
or under estimation.
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