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ABSTRACT

Although agriculture is a victim of environmental risk due to global warming, but ironically it also contributes to
global greenhouse gas (GHG) emission. The objective of this experiment was to determine the influence of long-term
conservation tillage and N fertilization on soil carbon storage and CO

2
 emission in corn-soybean rotation system. A

factorial experiment was arranged in a randomized completely block design with four replications. The first factor
was tillage systems namely intensive tillage (IT), minimum tillage (MT) and no-tillage (NT). While the second factor
was N fertilization with rate of 0, 100 and 200 kg N ha-1 applied for corn, and 0, 25, and 50 kg N ha-1 for soybean
production. Samples of soil organic carbon (SOC) after 23 year of cropping were taken at depths of 0-5 cm, 5-10
cm and 10-20 cm, while CO

2
 emission measurements were taken in corn season (2009) and soybean season (2010).

Analysis of variance and means test (HSD 0.05) were analyzed using the Statistical Analysis System package. At 0-
5 cm depth, SOC under NT combined with 200 kg N ha-1 fertilization was 46.1% higher than that of NT with no N
fertilization, while at depth of 5-10 cm SOC under MT was 26.2% higher than NT and 13.9% higher than IT.
Throughout the corn and soybean seasons, CO

2
-C emissions from IT were higher than those of MT and NT, while

CO
2
-C emissions from 200 kg N ha-1 rate were higher than those of 0 kg N ha-1 and 100 kg N ha-1 rates.  With any N

rate treatments, MT and NT could reduce CO
2
-C emission to 65.2 %-67.6% and to 75.4%-87.6% as much of IT,

respectively. While in soybean season, MT and NT could reduce CO
2
-C emission to 17.6%-46.7% and 42.0%-

74.3% as much of IT, respectively.  Prior to generative soybean growth,   N fertilization with rate of 50 kg N ha-1

could reduce CO
2
-C emission to 32.2%-37.2% as much of 0 and 25 kg N ha-1 rates.
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In recent decade, global warming due to
greenhouse gas (GHG) emission is receiving great
attention (Rastogi et al. 2002; Lal 2007).  Among
the greenhouse gases, CO

2
 is the most important

gas, accounting for 60% of global warming (Rastogi
et al. 2002). Agricultural systems are estimated to
contribute up to 20% of the global anthropogenic
CO

2
 emissions (IPCC 2006; Haile-Mariam et al.

2008). In contrast to agriculture in developed
countries that only contributes less CO

2
 emissions,

Indonesia agriculture along with land use change
and forest contributes to CO

2
 emission as much as

53% (Boer 2010). Intensive agriculture contributes
to CO

2
 emission through direct use of fossil fuels

from food production, indirect use of embodied
energy in inputs, and cultivation of soils that cause
the loss of carbon through decomposition and
erosion (Pretty and Ball 2001). As business as usual
practice in agriculture, intensive tillage (IT)
produces favorable soil microenvironment that can
accelerate microbial decomposition of plant
residues.  Tillage breaks down soil aggregates, helps
in mixing soil and organic particles, and enhances
gas diffusivity and air-filled porosity resulted in a
higher CO

2
 production (Rastogi et al. 2002). The

higher CO
2
 emission in intensive tillage therefore,

should be reduced, other wise it will decrease C
storage in the soil and end up with the decrease of
soil quality and soil productivity (Paustian et al.
2004).

Conservation tillage (CT) as a recommended
management practices, can act as a sink that can
both sequester C and reduce CO

2
 emission, thus



76 Utomo et al.: C-Storage and CO
2 
Emission in Long-term Conservation Tillage

reducing agriculture’s potential on global warming
(Pretty and Ball 2001; Rastogi et al. 2002; Six et
al.  2004; Lal 2007; Smith 2010). In fact, in the
Kyoto Climate Protocol and IPCC Guidelines for
National Greenhouse Gas Inventories, conservation
tillage is listed as an option for carbon sequestration
(Sedjo et al. 1998; Egglestone et al. 2006).  By
implementing CT therefore, Indonesia has an
opportunity to reduce national GHG emission as
much as 26% in 2020. This is because in upland
agriculture, CT has been rapidly expanded since
about 1990, particularly in the region with lack of
labors, such as in Sumatra, Borneo and Celebes.
Yet in 1998, CT has been explicitly stated in national
land preparation policy (Utomo et al. 2004).

Plant residue which used as mulch in CT is
important, because it serves as substrate that is
converted to microbial biomass and soil organic
matter, and has the potential to enhance carbon
sequestration in agricultural soils (Wright and Hons
2004; Smith and Collins 2007). Previous studies in
temperate regions showed that long-term CT using
plant residues could increased soil organic C in the
upper layer of soil, but it did not store soil organic
carbon more than IT for the whole soil profile
(Wright and Hons 2004; Al-Kaisi and Yin 2005;
Blanco-Canqui and Lal 2008).

The higher of soil C storage with respect to
CT is related to the lower of CO

2
  emission from

CT than IT. In general, CO
2
 emission from soil can

be attributed to biological and chemical process
within the soil that may include CO

2
 from soil

organic matter and crop residue decomposition, and
from root respiration (Rastogi et al. 2002; Al-Kaisi
et al. 2008). In biological process, soil micro flora
contributes 99% of the CO

2
 from decomposition of

organic matter, while the contribution of soil fauna
is much less. Root respiration, however, contributes
50% of the total soil respiration (Rastogi et al.
2002). Research conducted in temperate regions
showed that CO

2
 emission from CT was consistently

lower than IT (Reicosky 2001; Al-Kaisi and Yin
2005; La Scala et al. 2005; Brye et al. 2006; Bono
et al. 2008).  As that of CT, N fertilization as part
of integrated nutrient management can influence
both soil C sequestration and CO

2
 emission. The

influence of N fertilization on CO
2
 emission

however, is not well understood. Increasing N
fertilizer application rate was site specific and had
inconsistent effect on depressing CO

2
 emission (Al-

Kaisi et al. 2008). This inconsistent effect creates
challenge to carry out further study to understand
the effect of N fertilization and its interaction with
CT on soil storage and CO

2
 emission.

The long-term experiments of CT and N
application on C storage and CO

2
 emissions have

been conducted mostly in temperate regions, but
very few conducted in tropical region such as in
Indonesia. The objective of this experiment was to
determine the influence of long-term (22 and 23
years) conservation tillage and N fertilization on
soil carbon storage and CO

2
-C emission in corn-

soybean rotation system.

MATERIALS AND METHODS

Site Characteristics and Plot History

The long-term conservation tillage and N
fertilization experiment was established in February
1987 at the experiment farm of Politeknik Negeri
Lampung, Sumatra, Indonesia (Utomo et al. 1989;
Utomo et al. 2010). Cropping pattern of this long-
term experiment was cereal (corn or upland rice)-
legume (soybean, mungbean or cowpea)-fallow
(weed or bare soil) rotation. The long-term
experiment is located at 105o13’45.5"-
105o13’48.0"E, 05o21’19.6"-05o21’19.7"S, with
elevation of 122 m from sea level.  The land prior
to long-term experiment initiation was a ladang (a
rain-fed farming with period of fallow), which was
abandoned for more than four years and covered
by alang-alang (Imperata cylindrica) grass with
average dry matter 12.2 Mg ha-1. The soil is a Typic
Fragiudult with slope ranging from 6 to 9%. Soil
particle sizes composition in the soil surface layer
sampled in 1987 was 160, 320 and 520 g kg-1 of
sand, silt and clay, respectively. Initial bulk density
at 0-20 cm depth was 0.90 Mg m-3, total porosity
65.7%, pH 

H2O
 6.8, pH 

KCl
 5.8, soil organic-C 16.0 g

kg-1 and soil organic-N 2.0 g kg-1 (Utomo et al.
1989).  Due to the upper layer soil compaction, all
plots of conservation tillage were plowed in 1997
and 2002. In 2003, due to the soil became acid, so
that all plots were limed with 4 Mg ha-1 of CaCO

3

(Utomo 2004; Utomo et al. 2010).

Method and Analysis

The experiment was arranged in a factorial,
randomized completely block design, with four
replications. Plot size was four by six meters. The
first factor was tillage systems; those were intensive
tillage (IT) and conservation tillage (no-tillage, NT
and minimum tillage, MT). While the second factor
was nitrogen treatment with rates of 0, 100 and 200
kg N ha-1 applied for corn; and 0, 25, and 50 kg N
ha-1 for soybean production. Nitrogen source for the
N treatment was Urea 46% N. One third of N rates
were applied by hand banding close to the rows a
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week after planting and two third of N rates were
applied prior to generative period taken place.
Hybrid corn (Zea mays L.) variety Pioneer 21 was
planted at 3-5 cm depth at spacing of 75 × 25 cm on
September 9, 2009; while soybean [Soya max (L.)
Merr.] variety Tanggamus was planted at spacing
20 × 25 cm on May 10, 2010.

In 2008, land was covered with mixture of
broadleaf weeds and Imperata cylindrica which left
as fallow for a year. The dry matter weed weight
was 13.3 Mg ha-1 with C/N 31.9. Weeds prior to
corn crop were sprayed with glyphosate of 4.8 L
a.i. ha-1 and mixed with Rhodiamine 1.0 L ha-1 on
August 20, 2009; while weeds prior to soybean
season which also dominated by mixture of weeds
were sprayed on April 13, 2010 with the same
herbicide.  The deadly weeds and previous corn
stalk residues were used for mulch covering the soil
surface of CT, while in IT all deadly above-ground
weeds and corn stalk residues were removed.
Dif ferent from NT in which the soil was not being
plowed at all, soil surface of MT was slightly
plowed at 0-5 cm depth; while in IT treatment plots
were plowed twice at 0-20 cm depth.

Soil C storages in this experiment which
measured as soil organic carbon (SOC) were taken
on May 10, 2010 (after 23 years of cropping).  As
reported by Wright and Hons (2004); Blanco-
Canqui and Lal (2008); Utomo et al. (2010) that
SOC in conservation tillage is mostly observed in
the upper layer of soil, therefore, samples in this
experiment were taken at depths of 0-5 cm, 5-10
cm and 10-20 cm. Soil organic carbon in all depths
were determined with Walkey and Black method
(Nelson and Sommers 1984).

In corn season, CO
2
 measurements were taken

throughout the season from 28 August to 10
December 2009. Those measurements were taken
before plowing, one day after plowing (1 DAP), 2
DAP, 3 DAP, 20 DAP, 40 DAP, 60 DAP and 80
DAP.  In soybean season however, due to technical
problem in the field, measurement of CO

2
 emission

in the first 3 days after plowing were not measured.
Measurements of CO

2
 were taken from 11 June to

6 September 2010, those included 20 DAP, 40 DAP,
60 DAP, 80 DAP and 120 DAP. To determine the
effect of long-term no-tillage and N fertilization on
CO

2
 emissions in situ, upside down jars with

diameters of 12 cm were inserted into plots at 2 cm
depth, and small vials with containing 10 mL KOH
0.1N were placed in the jars. Evolved CO

2
 was

corrected for amounts found in the blank jar along
with sample measurement. After two hours field
measurement which taken at 9 to 11 in the morning
and at 3 to 5 in the afternoon, the KOH trap was

titrated with HCl 0.1 N to determine the CO
2
-C

equivalent (Anderson 1984; Anas (1989). To
calculate the amount of CO

2
 evolved from soil

trapped by KOH, formula modified by Anas (1989)
was used. The data in this paper were expressed as
kg CO

2
-C ha-1 day-1.

Statistical Analysis

Analysis of variance and means test with
Honest Significance Different (HSD 0.05) were
analyzed using the Statistical Analysis System
package (SAS Institute 2003).

RESULTS AND DISCUSSION

Soil Organic Carbon

Soil organic carbon (SOC) plays a significant
role in agro-ecosystem, due to it is directly related
to productivity (Lal 2007; Smith and Collins 2007).
After 23 years of cropping, SOC at depth of 0-5 cm
was significantly (p < 0.05) affected by tillage, N
fertilization and interaction of tillage with N
fertilization. Within this upper layer of soil, soil
organic C under NT with 200 kg N ha-1 fertilization
was 46.1% higher than NT with no N fertilization,
but there were no different than other treatment
combinations (Table 1).  This finding indicates that
NT has ability to increase SOC within the upper
layer of soil only if combined with optimum N
fertilization. This was attributed to the strong
influence both tillage treatment and N fertilization
on plant residue decomposition. Every season,
previous plant residues in conservation tillage (CT)
were used as mulch covering the soil surface.  The
weight of dry matter weed prior to experiment was
13.3 Mg ha-1 with C-N ratio 31.9. Additions of
previous plant residues on the surface and less soil
disturbance could increase soil organic C
particularly in upper layer of the soil. Conversely,
with no plant residues as mulch on the surface and
because of soil disturbance, IT could decrease soil
organic C due to erosion and decomposition.   The
presence of plant residues in CT will create better
micro climate that can enhance soil biota activity
(Lavelle 1984; Brito-Vega et al. 2009). This in situ
mulch can act as an effective insulator and precursor
of soil organic matter, and serve as substrate as well
that can be converted to microbial biomass (Blevins
et al. 1984; Wright and Hons 2004).  While N
fertilization provide available N that can enhance
biomass production, resulted in higher SOC. With
no N fertilization on the other hand, the higher N
immobilization with respect to NT could reduce
plant residue decomposition (Blevins et al. 1984).
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Plant residues used in CT combined with N
fertilization in CT, therefore are important in
agriculture, due to could enhance carbon
sequestration in agricultural soils.

At a deeper layer however, there was no
interaction effect (p<0.05) of tillage and N
fertilization on SOC. At depth of 5-10 cm, SOC
was only affected by tillage (p<0.05), while at depth
of 10-20 cm was only affected by N fertilization (p
< 0.05). Regardless of N fertilization, SOC under
MT at 5-10 cm depth was 26.2% higher than NT,
but only 13.9% higher than IT (Table 2). Because
of slightly tilled, the previous plant residues on MT
were slightly mixed and caused more contact with
soil particles, resulted in more plant residue
decomposition rate with respect to MT. On the other
hand, because of undisturbed soil surface, the plant
residues in NT after one season had not totally
decomposed yet. Unpublished data shown that
residue decomposition rates for IT, MT, NT were
75%, 67% and 65%, respectively.  At a deeper layer,
the strong response of SOC to N fertilization was

occurred.  Soil organic carbon from 200 kg N ha-1

rate at 10-20 cm depth was 20.9% and 25.8% higher
than those of 0 and 100 kg N ha-1 rates, respectively
(Table 3). This obvious response was mainly
attributed to the fact that in this depth, the plant
residues and soil N content were limited.

Similar study which carried out in Texas also
showed that after 20 years of cropping, SOC under
NT for all cropping sequence at 0-5 cm depth was
64% greater than IT, but at 5-15 cm depth, it was
only 28% greater than IT (Wright and Hons 2004).
The higher SOC in the upper soil layer in long-
term CT particularly if combined with optimum N
rate is in agreement with those reported by
researchers in subtropics ecosystem (Zibilske et
al. 2002; Al-Kaisi and Yin 2005; Blanco-Canqui
and Lal 2008).

Carbon Dioxide Emission

Corn season, 2009.  Measurements of CO
2

in corn season were taken before plowing
(treatment) and after plowing throughout the season
from 28 August to 10 December 2009. As those
reported by Rastogi et al. (2002) and Al-Kaisi et
al. (2008),  CO

2
-C emission in this paper is referred

to CO
2
 regardless of the source of soil CO

2
.

Prior to experiment, CO
2
-C emission was not

significantly (p<0.05) affected by any treatments.
After plowing (treatment), however, CO

2
-C

emissions throughout the corn season were
significantly (p<0.05) affected either by tillage or
by N fertilization, while at 1 DAP, 40 DAP, 60 DAP
and 80 DAP were significantly (p<0.05) affected
by interaction of tillage and N fertilization as well.
Regardless of N fertilization, average of CO

2
-C

emission from tillage treatment measured before
plowing was 3.3 kg CO

2
-C day-1 ha-1. It appears

that just one day after plowing (1 DAP), CO
2
-C

emission from IT increased sharply to reach
maximum magnitude to 14.6 kg CO

2
-C day-1 ha-1.

Compared to before plowing,  CO
2
-C emissions

from IT and MT were  342% and 67.1% higher,
while from NT was only 3.7% lower. Thereafter,
CO

2
-C emission from IT  was dropped sharply at 3

DAP  and then gradually declining, while from CT
was relatively leveled off up to the end of the season
(Figure 1a).  It turned out that  CO

2
-C emission

from IT throughout the season was consistently
highest among tillage treatments, while from MT
was the intermediate and from NT was the least
(Tables 3 and 4). The CO

2
-C emission averages

from IT, MT and NT for one season basis were
11.0, 4.2 and 2.6 kg CO

2
-C day-1 ha-1, respectively;

with ratios of IT to MT was 2.6 and IT to NT was
4.1.

Table 2.  Effect of  conservation tillage and N
fertilization on  soil organic carbon after
23 years of crop season at 5-10 cm and
10-20 cm depth.

Treatment 
Depth (cm) 

5-10 10-20 
  ……..… (g kg-1) ……….. 
Intensive tillage 
Minimum tillage 
No-tillage 

0 kg N ha-1 

100 kg N ha-1 

200 kg N ha-1 

 
 

 

16.5 ab 
18.8 b 
14.9 a 

15.2 a 
16.7 a 
18.3 a 

14.4 a 
14.6 a 
14.5 a 

 13.8 b 
13.2 a  
16.6 c 

 
 
 
 
 
 
 

 Values within a column followed by the same letter are
not significantly different at 0.05 level by HSD test.

Tabel  1. Interaction effect of  conservation tillage
and N fertilization on soil organic carbon
after 23  years of crop season at 0-5 cm
depth.

Tillage treatment 
N fertilization (kg N ha-1) 

0 100 200 

 
Intensive tillage 

……….... (g kg -1) ……..…. 
18.4 ab 16.2 ab 19.6 b 

Minimum tillage 17.6 ab 20.2 b 19.3 ab 

No-tillage 14.1 a 15.4 ab  20.6 b 

 Values within a column followed by the same letter are not
significantly different at 0.05 level by HSD test.
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The higher CO
2
-C emission with respect to IT

was mainly because tillage broke and inverted the
soil to allow rapid CO

2 
loss and O

2
 entry; and mixed

the residues and organic particles that could enhance
microbial attack (Reicosky 2001; Rastogi et al.
2002; Smith and Collins 2007).  On the other hand,
less tillage reduced gas diffusivity and air-filled
porosity, and kept soil organic C unexposed (Rastogi
et al. 2002).  These findings are in agreement with
those reported by Reicosky (2001); Desjardins, et
al. (2002); La Scala et al. (2005); Brye et al. (2006)
that CO

2
-C emission from IT was significantly

higher than CT.
Although not as strong as tillage treatment, N

treatment significantly (p<0.05) affected CO
2
-C

emissions. It turned out that CO
2
-C emissions from

200 kg N ha-1 rate were consistently higher than

Table 3.  Effect of long-term conservation tillage
and  N fertilization  on CO

2
-C emission

in  corn crop, 2009.

Values within a column followed by the same letter are not
significantly different at 0.05 level by HSD test.

Treatment 
combination 

      Day after plowing (DAP) 
    2           3   20  

 ...... (kg CO2-C day-1 ha-1) ....... 
Intensive tillage  14.33 c    11.97 c  11.25 c 
Minimum tillage                     5.41 b   4.86 b   4.72 b 

No-tillage    2.79 a    3.13 a   3.37 a 

0 kg N ha-1 7.19 a    6.53 ab   5.68 a 
100 kg N ha-1 7.27 a 6.29 a   5.84 a 
200 kg N ha-1 8.07 b 7.14 b   7.83 b 

 

Figure 1. Pattern of CO
2
-C emission in corn season as affected by (a) conservation tillage and  (b) N

fertilization;  = intensive tillage,  = minimum tillage,  = no-tillage,  = 0
kg N ha-1,  = 100 kg N ha-1 , and  = 200 kg N ha-1.

those of 0 kg N ha-1 and 100 kg N ha-1 rates (Tables
3 and 4). There were two peaks of CO

2
-C emissions

occurred in this emission pattern (Figure 1b).   The
first peak of CO

2
–C emission was reached at 1 DAP

and the second peak was at 20 DAP.  After the
second peak, CO

2
–C emissions from N treatment

were gradually declining and ended up with very
close magnitude.  The averages of CO

2
-C emission

from N0, N1 and N2 treatment for one season basis
were 5.4, 5.6 and 6.4 kg CO

2
-C day-1 ha-1,

respectively; with CO
2
-C emission ratios of N0 to

N1 was 1.0 and N0 to N2 was 0.8.
 The significant effect of N fertilization on CO

2
-

C emissions at the first three days after plowing
was associated with residual effect of long-term N
fertilization. Residual N has induced microbial
activity in the soil that resulted in more CO

2
-C

emission.  It can be noted that in this long-term
experiment, N treatment has been applied since
1987 (24 years of application).  At 20 DAP and the
rest of sampling dates, however, higher of CO

2
-C

emissions from higher N rates were attributed to
the direct effect of N fertilization on CO

2 
production.

According to Rastogi et al. (2002), and Smith and
Collins (2007) application of nitrogenous fertilizer
affects CO

2
-C emission directly by providing

nitrogen to crop and microbe for their growths, and
indirectly by influencing soil pH.  Nitrogen
fertilization provided more available N to both crops
and microbes that could accelerate root respiration
and microbial decomposition of organic matter
(Rastogi et al. 2002; Luo and Zhou 2006; Smith
and Collins 2007).   In fact, root respiration is
important contributor to in situ soil respiration; it
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contributes approximately 50% of the total soil
respiration (Rastogi et al. 2002; Luo and Zhou
2006). Previous research carried out by Utomo et
al. (2010) showed that N fertilization had increased
(p<0.05) microbial biomass C both in rhizosphere
and in non-rhizosphere. However, the significant
effect of N fertilization on CO

2
-C emission in corn

crop is not in agreement with those reported by Brye
et al. (2006) and Al-Kaisi et al. (2008).

Table 4 shows interaction effect of tillage and
N fertilization on CO

2
-C emissions along the corn

season.  With residual 200 kg N ha-1, CO
2
-C

emission from IT treatment at 1 DAP was the
highest (p<0.05) among treatment combinations,
while MT with any N rate fertilizations was the
second and NT was the lowest CO

2
-C emission.

With any residual N rate treatments, NT and MT
respectively reduced CO

2
-C emission to 84.3% and

66.7% as much of IT. Although the magnitudes were
decreasing as a function of after plowing time, CO

2
-

C emission from combination of IT and N fertilization
were still consistently highest among treatment
combination at 40, 60 and 80 DAP. With any N rate
treatments, NT could reduce CO

2
-C emission to

75.4%-87.6% as much of IT, while MT could
reduce to 65.2 %-67.6% (Table 4). The higher CO

2
-

C emission with respect to combination of IT and
higher N rate was associated with the synergetic
effect of tillage and N fertilization treatments.
Combination of IT and optimum N rate created a
better soil micro climate and available N that could
produce more soil CO

2 
emission. High N content is

generally associated with high growth rates, leading
to high growth respiration (Luo and Zhou 2006).

Treatment combination 
Day after plowing (DAP) 

     1       40      60     80 
Conventional tillage: .................................. (kg CO2-C day-1 ha-1) ............................... 

0 kg N ha-1 13.77 c    9.16 c    8.12 d 7.32 c 
100 kg N ha-1 13.54 c  10.67 c    8.52 d 7.64 dc 
200 kg N ha-1 16.24 d  12.82 d  10.51 e 8.68 d 

Minimum tillage:  
0 kg N ha-1 

 
5.41 b 

 
   3.11 ab 

 
   2.63 bc 

 
2.79 b 

100 kg N ha-1 5.89 b    3.42 b    2.71 bc 3.11 b 
200 kg N ha-1 5.57 b    4.46 b    3.34 c 3.66 b 

No-tillage: 
0 kg N ha-1 

 
2.55 a 

 
   2.23 ab 

 
   1.75 ab 

 
2.31ab 

100 kg N ha-1 2.55 a    2.63 ab    2.31 b 2.55 ab 
200 kg N ha-1 4.30 ab    1.59 a    1.35 a 1.67 a 

 

Tabel 4.  Interaction effect of long-term conservation tillage and N fertilization on
CO

2
-C emission in corn crop, 2009.

Values within a column followed by the same letter are not significantly different at 0.05 level by HSD test.

Soybean season, 2010.  Measurements of
CO

2
 in situ in soybean season were taken after

plowing throughout the season from 11 June to 6
September 2010 at 20 DAP, 40 DAP, 60 DAP, 80
DAP and 120 DAP. Throughout the soybean season,
CO

2
-C emissions were affected (p<0.05) by tillage,

but not affected by interaction effects of tillage and
N fertilization. While at 60 DAP, CO

2
-C emission

was only affected (p<0.05) by N fertilization.
It was obvious that CO

2
-C emision from IT

throughout the soybean season was consistently
higher (P<0.05) than CT (Table 5). At 20 DAP
through 120 DAP, NT could reduce 42.0%-74.3%
as much CO

2
-C emission as IT, while MT could

reduce only 7.0%-46.7% from IT. In contrast to corn
season, however, the effect of N fertilization on
CO

2
–C emission throughout the soybean season was

inconsistent as those reported by Brye et al. (2006)
and Al-Kaisi et al. (2008). In fact that at 60 DAP,
CO

2
 emision from 50 kg N ha-1 was lowest (p<0.05)

than other treatments, while CO
2
-C emision from

25 kg N ha-1 was similar to that of without N
fertilization. It turned out that 50 kg N ha-1 could
reduce CO

2
 to 32.2%-37.2% as much of 0 and 25

kg N ha-1 treatments.  The lack response of N
fertilization of N fertilization on CO

2
-C emission

in soybean season was reflected to no interaction
effect of tillage and N fertilization treatments on
CO

2
-C emission.
Negative effect of higher N rate on CO

2
–C

emision was attributed to the negative effect of N
to soybean and microbe growths, resulted in a lower
CO

2
-C. Proper N addition could enhance CO

2
-C

evolution to a certain level, otherwise reduction
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occurred.  This was due to luxury consumption of
N by soil microbes in fact could suppress CO

2
-C

pro-duction (Abro et al. 2011).  In nitrogen-
sufficient such as in soybean crop season, N
fertilization could exacerbate conditions of
“nitrogen saturation”, resulting in less soil
respiration. Nitrogen fertilization  could  also
decrease phenol oxidase activity by 40% in soil and
increase it by 63% in litter. Therefore,
condensations of nitrogen rich compounds with
phenolics could make soil organic matter more
recalcitrant, resulting in decreases of microbial
respiration (Luo and Zhou 2006).  In contrast to
corn season, less response of CO

2
 gas emission to

N fertilization in soybean season was also related
to cropping pattern history of this long-term
experiment which included soybean into cereal-
legume rotation (Utomo et al. 1989). Unpublished
data of this experiment supported this finding that
there was no significant effect of long-term N
fertilization on soybean growth and yield.

This finding was supported by result from
incubation study carried out by Abro et al. (2011)
that CO

2
-C emission was significantly increased at

optimum N rate, but declined at higher N rate.  The
response of CO

2
-C emissions to tillage and N

fertilization are shown in Figure 2a and 2b. The
peaks of CO

2
-C emission due to tillage and N

fertilization were occurred at 20 DAP and 60 DAP,
while the least of CO

2
-C emissions occurred at 40

DAP and 80 DAP. These unique responses were
related to soil moisture and soil temperature
fluctuation along the season (Figures 2c and 2d).

In fact, the fluctuation of CO
2
-C emissions

throughout the season were highly correlated to soil
moisture (r = 0.50** to 0.73**) and soil temperature
(r = 0.64** to 0.81**).  Soil moisture ranges at 2.5
cm depth throughout the season were 15 to 40%

Table 5.  Effect of long-term conservation tillage and  N fertilization on CO2-C emission  in
soybean crop, 2010.

 1 
Treatment 

Day after planting (DAP) 
        20    40      60 80 120 

 ....................................... (kg CO2-C day-1 ha-1) ......................................... 

Intensive tillage 17.38 b 15.23 b 18.31 b 16.13 b 16.14 c 

Minimum tillage 14.01 ab 10.19 a 15.07 ab   7.51 a   8.60 b 
No-tillage 10.11 a   7.91 a 10.67 a   5.94 a   4.14 a 

 0 kg N ha-1 14.28 a 12.58 a 15.98 ab 10.99 a   9.82 a 

25 kg N ha-1 14.15 a 9.93 a 17.25 b   8.89 a 10.46 a 
50 kg N ha-1 13.08 a 10.83 a 10.83 a   9.71 a   8.60 a 

1234567
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1234567
1234567
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123456789
123456789
123456789
123456789
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123456789
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123456789
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123456789
123456789

Values within a column followed by the same letter are not significantly different at 0.05 level by HSD test.

(w/w), and soil temperature ranges were 29.0 to
31.5o C. Such favorable micro climate enhanced
microbial growth, resulted in higher CO

2
-C

emissions.
Although the magnitude was fluctuating, CO

2
-

C emission from IT in soybean season was
consistently higher than that of CT along the season.
The CO

2
-C emission averages  from IT, MT and

NT for one season basis were 16.8, 11.7 and 8.7 kg
CO

2
-C day-1 ha-1, respectively; with  IT to MT ratio

1.4 and  IT to NT ratio 1.9. Different to corn season,
however, CO

2
-C emission in soybean was reduced

by higher N rate. Carbon dioxide-C emissions
average of N0, N1 and N2 treatment were 13.5, 12.6
and 11.1 CO

2
-C day-1 ha-1, respectively; with N0 to

N1 ratio 1.1 and N0 to N2 ratio 1.2.

CONCLUSIONS

After 23 years of cropping, SOC under NT
combined with 200 kg N ha-1 fertilization at depth
of 0-5 cm was 46.1% higher than NT with no N
fertilization, while at depth of 5-10 cm, SOC under
MT was 26.2% higher than NT and 13.9% higher
than IT.  At depth of 10-20 cm, soil organic C in
200 kg N ha-1 treatment was 20.3% and 25.8%
higher than those of 0 and 100 kg N ha-1 treatments,
respectively.

Throughout the corn and soybean seasons,
CO

2
-C emissions from IT were consistently higher

than CT. In corn season, MT and NT combined with
any N rate treatments could reduce CO

2
-C emission

to 65.2 %-67.6% and to 75.4%-87.6% as much of
IT, respectively. While throughout the soybean
season, MT and NT could reduce CO

2
-C emission

to 17.6%-46.7% and 42.0%-74.3% as much of IT,
respectively. Prior to generative soybean growth,
50 kg N ha-1 rate could reduce CO

2
 gas emission to
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32.2%-37.2% as much of 0 and 25 kg N ha-1 N
rates.

The results suggest that conservation tillage
as one of best practices in upland agriculture can
strongly contribute to substantial reduction of
national GHG emission.

ACKNOWLEDGEMENT

The research was financially supported by
Directorate General of Higher Education, Ministry
of National Education Republic of Indonesia
through Hibah Kompetitif Penelitian  sesuai
Prioritas Nasional in 2009-2011.  Institutional
supports from Faculty of Agriculture and Research
Institute of Lampung University are also highly
acknowledged.

REFERENCES

Abro SA,  XH Tian, DH You and XD Wang. 2011.
Emission of carbon dioxide influenced by nitrogen
and water levels from soil incubated straw.  Plant
Soil Environ 57 (6): 295-300.

Al-Kaisi and X Yin. 2005. Tillage and crop residue effects
on soil carbon dioxide emission in corn-soybean
rotation. J Environ Qual 34 (2): 437-445.

Al-Kaisi MM, ML  Kruse and JE Sawyer. 2008. Effect
of nitrogen fertilizer application on growing season
soil carbon dioxide emission in a corn–soybean
rotation. J. Environ Qual 37: 325-332.

Anas I. 1989. Biologi tanah dalam praktek. Departemen
Pendidikan dan Kebudayaan Direktorat Jenderal
Pendidikan Tinggi Pusat antar Universitas
Bioteknologi. Institut Pertanian Bogor. 161p  (in
Indonesian).

Figure 2. Pattern of CO
2
-C emission in soybean season as affected by conservation tillage (a), N fertilization

(b), pattern of soil moisture  (c), and soil temperature (d) as affected by  conservation tillage; 
= intensive tillage,  = Minimum tillage,  = no-tillage,  =  0 kg N ha-1,  = 25
kg N ha-1 , and  = 50 kg N ha-1.

S
oi

l m
oi

st
ur

e 
(%

)

20

18

16

14

12

10

8

6

4

2

0
0              20            40            60             80         100

Day after plowing

20

18

16

14

12

10

8

6

4

2

0

kg
 C

O
2-

C
 h

a-1
 d

ay
-1

0              20            40            60             80         100

Day after plowing

(a) (b)

kg
 C

O
2-

C
 h

a-1
 d

ay
-1

S
oi

l t
em

pe
ra

tu
re

 (o C
)

45

40

35

30

25

20

15

10

5

0

32.0

31.5

31.0

30.5

30.0

29.5

29.0

28.5

0                        50                      100                    150 0                        50                      100                    150

Day after plowing Day after plowing

(c) (d)



83J Trop Soils, Vol. 17, No. 1, 2012: 75-84

Anderson JPE. 1984. Soil respiration. Methods of Soil
Analysis. Part 2. In: AL Page, RH Miller and DR
Keeney (eds). Chemical and Microbial Properties.
Second Edition. ASA, SSSA Publisher. Madison,
Wisconsin, USA, pp. 831-872.

Blanco-Canqui H and R Lal. 2008. No-till and soil-
profile carbon sequestration: an on farm assetment.
Soil Sci Soc Am J 72: 693-701.

Blevins RL, MS Smith and GW Thomas. 1984. Changes
in soil properties under no-tillage. In: RE Phillips
and SH Phillips (eds). No-tillage Agriculture:
Principles and Practices. Van Nostrand Reinold,
pp. 190-230.

Boer R. 2010. Strategi Mitigasi Emisi GRK dari Lahan
Gambut. Centre for Climate Risk and Opportunity
Management in South East Asia and Pacific
(CCROM SEAP), Bogor Agriculture University (in
Indonesian).

Bono A, R Alvarez, DE Buschiazzo and RJC Cantet.
2008. Tillage effects on soil carbon balance in a
semiarid agroecosystem. Soil Sci Soc Am J 72:
1140-1149.

Brito-Vega H, D Espinosa-Victoria, C Fragoso, D
Mendoza, NDC Landaro and AA Chavez. 2009.
Soil organic particle and presence of earthworm
under different tillage systems. J Biol Sci 9: 180-
183.

Brye KR, DE Longer and EE Gbur. 2006. Impact of
tillage and residue burning on carbon dioxide flux
in a wheat-soybean production system. Soil Sci Soc
Am J 70: 1145-1154.

Desjardins RL, W Smith, B Grant, C Campbell, H Janzen
and R Riznek. 2002. Management Strategies to
Sequester Carbon in Agricultural Soils and to
Mitigate Greenhouse Gas Emissions. International
Workshop on Reducing Vulnerability of Agriculture
and Forestry to Climate Variability and Climate
Change. Ljubljanu,  Slovenia, October 7th – 9th,
2002

Eggleston S, L Buendia, K Miwa,  T Ngara and K Tanabe.
2006. IPCC guidelines for national greenhouse gas
inventories. Technical Report. IPCC.

Haile-Mariam S, HP Collins and SS Higgins. 2008.
Greenhouse gas fluxes from an irrigated sweet corn
(Zea mays L.)–potato (Solanum tuberosum L.)
rotation. J Environ Qual 37: 759-771.

IPCC [Intergovernmental Panel on Climate Change].
2006. Guidelines for national greenhouse gas
inventories. IPCC/IGES, Hayama, Kanagawa,
Japan.

La Scala, ND Bolonhezi and GT Pereira. 2005.  Short-
term soil CO

2
-C emission after conventional and

reduced tillage of a no-till sugar cane area in
southern Brazil. Soil Till Res 91 (1-2): 244-248.

Lal R. 2007. Soil carbon sequestration to mitigate climate
change and advance food security. Soil Sci  32 (12):
943-956.

Lavelle P.  1984. The soil system in the humid tropics.
Biology  International IUBS, pp. 1-17.

Lou Y and X Zhou. 2006. Soil Respiration and the
Environment. Academic Press. Burlington, MA,
USA/Elsevier, Inc. 316p

Nelson DW and LE Sommers. 1984. Total carbon, organic
carbon, and organic matter. Methods of Soil
Analysis. Part 2. In: AL Page, RH Miller and DR
Keeney (eds). Chemical and Microbial Properties.
Second Edition. ASA, SSSA Publisher. Madison,
Wisconsin, USA, pp.539-580.

Paustian K, CV Cole, D Sauerbeck and N Sampson.
2004. Agricultural mitigation of greenhouse gases:
science and policy options. Council on Agricultural
Science and Technology (CAST) Report, R141
2004, ISBN 1-887383-26-3, 120p

Pretty JN and AS Ball. 2001. Agricultural influences on
carbon emission and sequestration: a review of
evidence and emerging trading options.  Centre for
Environment and Society Occasional Paper  2001-
03. University of Essex, 30p.

Rastogi M, S Singh and H Pathak. 2002. Emission of
carbon dioxide from soil. Current Science 82 (5):
510-517.

Reicosky DC. 2001. Effects of conservation tillage on
soil organic carbon dynamics: field experiment
in the U.S. Corn Belt. In: DE Scott, RH Mohtar
and GC Steinhart (eds).  Sustaining the Global
Farm. Purdue University and the USDA-ARS
National Soil Erosion Research Laboratory, pp.
481-485.

SAS [Statistical Analysis System] Institute. 2003. The
SAS system for windows. Release 9.1. SAS
Inst.Inc., Cary, NC.

Sedjo R, B Sohngen and  P Jagger. 1998. Carbon sinks
in post-Kyoto world. Internet Edition.Resources for
the Future. Washington DC.

Six J, SM Ogle, FJ Breidt, RT Conant, AR Mosier and K
Paustian. 2004. The Potential to mitigate global
warming with no-tillage management is only
realized when practised in the long term. Global
Change Biology. 10p.

Smith JL and HP Collins. 2007. Management of
organisms and their processes in soils. In: EA Paul
(ed). Soil Microbiology, Ecology and Biochemistry.
Third Edition. Academic Press, Burlington, USA,
532 p.

Smith KE. 2010. Effect of elevated CO
2
 and agricultural

management on flux of greenhouse gases from soil.
Soil Sci 175 (7): 349-356.

Unger PW. 1991. Organic matter, nutrient and pH
distribution in no- and conventional tillage semiarid
soils. Agron J 83: 186-189.

 Utomo M, H Suprapto and Sunyoto. 1989. Influence of
tillage and nitrogen fertilization on soil nitrogen,
decomposition of alang-alang (Imperata
cylindrica) and corn production of alang-alang
land.  In: J van der Heide (ed). Nutrient
management for food crop production in tropical
farming systems. Institute for Soil Fertility (IB),
pp.367-373.



84 Utomo et al.: C-Storage and CO
2 
Emission in Long-term Conservation Tillage

Utomo M. 2004. Olah tanah konservasi untuk budidaya
jagung berkelanjutan. Prosiding Seminar Nasional
IX Budidaya Pertanian Olah Tanah Konservasi.
Gorontalo, 6-7 Oktober, 2004, pp.18-35  (in
Indonesian).

Utomo M,  A Niswati, Dermiyati, MR Wati, AF Raguan
and S Syarif. 2010. Earthworm and soil carbon
sequestration after twenty one years of continuous
no-tillage corn-legume rotation in Indonesia. JIFS
7: 51-58.

Wright AL and FM Hons.  2004. Soil aggregation and
carbon and nitrogen storage under soybean cropping
sequences. Soil Sci Soc Am J 68: 507-513.

Zibilske LM, JM Bradford and JR Smart. 2002.
Conservation tillage induced change in organic
carbon, total nitrogen and available phosphorus in
a semi-arid alkaline subtropical soil. Soil Till Res
66: 153-163.


