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ABSTRACT

This study examines the effects of diverse land use and land cover (LULC) types on soil physico-chemical proper-
ties and carbon sequestration potential in the northern Madhupur Tract, Bangladesh. Soil samples were collected
from seven LULC types – sal forest, social forest, orchard, bare land, agricultural land, protected area, and built-up
area across three depths (0–15 cm, 16–40 cm, and 41–70 cm) between April and September 2022. Key parameters
analyzed included texture, bulk density, pH, electrical conductivity (EC), total nitrogen, available phosphorus,
exchangeable potassium, available sulfur, organic carbon (OC), and soil organic carbon (SOC). Soil texture ranged
from clay loam to clay. Bulk density was the lowest in built-up areas (1.57–1.62 g cm-³) and the highest in protected
areas (1.97–2.20 g cm-³). Orchard soils had the highest surface moisture (23.26%). Surface soils showed the highest
EC (0.82 dSm-1), total N (0.11%), available P (118.6 ppm), and OC (1.07%), while pH increased with depth, peaking at
6.15. SOC stock differed significantly among land uses (F = 6.56, p < 0.05), highest in social forests (138.67 Mg ha-¹) and
built-up areas (134.04 Mg ha-¹). Corresponding CO‚  mitigation potentials were 508.93 Mg C ha-¹ and 491.34 Mg C
ha-¹. Agricultural land had the lowest SOC stock (85.31 Mg ha-¹). Enhancing carbon storage through better land

management is vital for sustainability and climate resilience.

INTRODUCTION

Carbon sequestration in terrestrial ecosystems
refers to the net removal of atmospheric carbon
dioxide (CO‚ ) or the prevention of its release from
land-based systems, a process central to climate
change mitigation (IPCC, 2000). Globally, soils
represent a significant carbon sink, storing an
estimated 2,300–2,500 gigatonnes (Gt) of carbon,
making them the third-largest reservoir after oceans
and fossil fuels (Matovic, 2011; Lal, 2008). Soil
organic carbon (SOC) is a pivotal component of this
pool, containing nearly twice as much carbon as the
atmosphere (Rahman et al., 2021). Beyond its
climate-regulating role, SOC supports soil fertility,
water retention, and nutrient cycling, thereby
underpinning agricultural productivity and food
security (Bünemann et al., 2018). Because soils can
function as both sources and sinks of greenhouse
gases (GHGs), their management strongly influences
global carbon budgets (Smith et al., 2015; FAO,
2020).

Land use and land cover (LULC) change is
one of the primary drivers of SOC variability. The
conversion of forests and grasslands to croplands
typically reduces SOC stocks, whereas practices
such as agroforestry, residue retention, and reduced
tillage can enhance them (Don et al., 2011; Chenu
et al., 2019; Lal, 2021). In tropical regions, where
land pressures are particularly intense, understanding
SOC dynamics across different LULC types is
essential for developing climate-smart land
management strategies (Post & Kwon, 2000; Kooch
et al., 2020).

In Bangladesh, soils are distributed across
diverse physiographic units, among which the
Madhupur and Barind tracts represent distinctive
Pleistocene terraces. The Madhupur Tract is
especially important for its Sal (Shorea robusta)
forests, which account for approximately one-third
of the nation’s forest land (BBS, 2005; Rahman,
2015). However, this region is under severe
anthropogenic pressure due to population growth,
agricultural expansion, deforestation, and
infrastructure development linked to its proximity to
Dhaka (Alamgir et al., 2021). These transformations
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threaten both biodiversity and ecosystem services,
including soil carbon storage, with potential
implications for Bangladesh’s national GHG
inventories and climate commitments (Hossain et
al., 2020; IPCC, 2021).

Despite its importance, research on carbon in
the Madhupur TracMg has primarily concentrated
on aboveground biomass carbon (Karim et al., 1994;
Rahman, 2015; Saha et al., 2021), with relatively
little attention given to soil carbon pools. Where SOC
has been examined, studies have either been broad-
scale (Rahman et al., 2021; Hossain et al., 2020) or
limited to single land-use categories. Systematic,
depth-resolved assessments of SOC stocks across
the heterogeneous land uses of the Tract, ranging
from natural and social forests to orchards,
agricultural land, bare land, protected areas, and
built-up areas, are virtually absent. It represents a
critical knowledge gap, particularly given the region’s
rapid land transformation.

This study addresses that gap by conducting a
comparative, multi-depth (0–70 cm) assessment of
soil physico-chemical properties and SOC stocks
across seven LULC types in the northern Madhupur
Tract. By quantifying not only SOC but also the
associated CO‚  mitigation potential, this work
moves beyond descriptive analysis to evaluate the
climate-regulating services of soils under contrasting

land management regimes. Importantly, our findings
reveal that social forests and even certain built-up
areas retain higher SOC than intensively cultivated
croplands, challenging conventional assumptions
about land-use effects on soil carbon.

Thus, the novelty of this study lies in (i) providing
the first integrated, depth-specific SOC dataset across
multiple LULC systems in the Madhupur Tract, (ii)
identifying land-use patterns that either deplete or
enhance soil carbon storage, and (iii) linking SOC
stocks with CO‚  mitigation potential in a rapidly
transforming Pleistocene terrace ecosystem. These
insights will support the design of sustainable land
management practices, inform Bangladesh’s climate
mitigation policies, and contribute to global discussions
on soil-based natural climate solutions (Paustian et
al., 2016; Jones et al., 2018).

MATERIALS AND METHODS

Site Selection

The study was conducted in the northern part
of the Madhupur Tract, which lies within the greater
Mymensingh and Tangail districts. The Madhupur
Sal Forest (MSF) is a tropical, moist, deciduous forest
that represents one of Bangladesh’s distinctive
forest ecosystems. Geographically, the MSF is

Figure 1. Map of the study area (a) Map of the forest areas of Bangladesh, compiled from MODIS Terra/
Aqua 16-day normalized difference vegetation index (NDVI) for 2021 (adapted from Farukh et al.,
Atmosphere, 2023, 14, 97; https://doi.org/10.3390/atmos14010097, (b) research location
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located at 24°45' N latitude and 90°05' E longitude
(Figure 1). The MSF spans 18,453.90 hectares, of
which 1,022.63 hectares are designated as reserved
forest. An additional 1,743.12 hectares are currently
undergoing the process of being declared a reserved
forest. To support biodiversity conservation, the
Government of Bangladesh designated the
Madhupur Garh region as the Madhupur National
Park (MNP) (Ahmed, 2008). According to IPAC
(2009), MNP is divided into four administrative
ranges and ten beats. The four ranges are: i)
National Park Range, ii) Dokhola Range, iii)
Madhupur Range, and iv) Arankhola Range. For
this study, three ranges — National Park, Dokhola,
and Arankhola — were selected as sampling sites.

Broadly, the study area was categorized into
seven distinct land use types: forest land (both natural
Sal and social forests), agricultural land, orchard
land, bare land, protected area, and built-up area. In
recent decades, deforestation within the Madhupur
Fores Mg has been primarily driven by expanding
agricultural practices, including the cultivation of
cash crops such as corn. Local communities have
also increasingly established commercial pineapple
and banana orchards within the forest. Areas of bare
land have been observed, indicating further land
degradation. Currently, the Madhupur Sal Forest
covers approximately 45,564.18 acres, of which
2,525.14 acres are officially designated as a reserved
forest (protected area). Historically, a significant
portion of this foresMg has been encroached upon
by local settlers, contributing to the expansion of
built-up areas. Consequently, the forested area has
been diminishing over time. Misguided policy
decisions and corruption have further exacerbated
the degradation of the forest, severely threatening
this unique habitat for flora and fauna.

Soil Sample Collection And Preparation

To conduct the study, a stratified random
sampling method was employed following the
approach of Wu et al. (2016). The initial sampling
point was selected at random. Within each of the
seven LULC types, sampling plots were first
identified using recent land use maps and ground-
truthing surveys. To minimize edge effects and local
heterogeneity, sampling was restricted to relatively
homogeneous patches of at least 0.5 ha with minimal
disturbance. Within each patch, sampling points
were randomly chosen, with three replications per
LULC type across the three administrative ranges
(National Park, Dokhola, and Arankhola). In total,
63 soil samples were collected, representing three
soil depths: 0–15 cm, 16–40 cm, and 41–70 cm. GPS

coordinates were recorded for all sampling points
to ensure reproducibility.

All samples were collected once during the peak
dry season (April–May 2022), which minimized
temporal variability in soil moisture and management
activities. Although the study period covered April–
September 2022, the sampling itself was confined
to this dry-season window, making the dataset a
single-season baseline assessment.

The collected samples were transported to the
laboratory for subsequent physical and chemical
analyses. In preparation, the samples were air-dried
at room temperature, thoroughly mixed, crushed, and
sieved through a 20-mesh screen, then stored in
plastic bags. All laboratory analyses were conducted
at the Bangladesh Institute of Nuclear Agriculture
(BINA) in Mymensingh.

Analysis of Soil Sample

Soil Texture

Soil texture was determined using the Feel
method (Arshad et al., 1997), and soil classes were
identified based on the USDA soil textural
classification system.

Soil Moisture Content

Soil moisture (SM) content is a key component
of the soil water budget. It plays a vital role in
agriculture, hydrology, and water resources
management, particularly in determining crop water
requirements. SM content was determined using the
following equation:

 % 𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 =  
𝑊𝑒𝑡  𝑠𝑜𝑖𝑙  (𝑔)−𝐷𝑟𝑦  𝑠𝑜𝑖𝑙  (𝑔)

𝐷𝑟𝑦  𝑠𝑜𝑖𝑙  (𝑔)
 × 100 

Soil Bulk Density

Soil bulk density was determined using the core
sampling method (Blake & Hartge, 1986). Oven-
dry (at 105°C) soil samples were used for moisture
correction. The following formula calculates bulk
density:

Bulk density (g cm-3) = (Oven dry weight of
soil in gm)/ (Volume of the soil in cm3)

where, Volume of the soil = Volume of core –
Volume of the stone.

Soil pH

The soil pH was determined electrochemically
as described by Jackson (1962).
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Soil electrical conductivity (EC)

The electrical conductivity of soil was measured
by the EC meter (Biswas & Mukherjee, 1987).

Organic carbon

Organic carbon of soil was determined by the
wet oxidation method of Walkey and Black (1934).

Soil Organic Carbon (SOC)

Soil organic carbon (SOC) was analyzed using
the Walkley-Black wet oxidation method (Walkley
& Black, 1934). Total SOC was estimated using
the following formula, as described by Donato et al.
(2011) and Sahu et al. (2016), and the amounts were
converted into tonnes per hectare.

SOC= Organic carbon content % × soil bulk
density (g cm-3) × thickness of horizon

Total Nitrogen

Total nitrogen content in soil was determined
by the semi-micro-Kjeldahl method (Bremner &
Mulvaney, 1982).

Available Phosphorus

Available P was extracted from soil samples
using the Olsen method (Olsen et al., 1954).

Exchangeable Potassium (K)

Exchangeable potassium (K) was determined
using a flame photometer and calibrated with a
standard K curve (Black, 1965).

Available Sulphur

Available Sulphur was determined by Williams
and Steinberg (1959).

CO
2
 mitigation potential in different land use

types through sequestration

CO
2
 mitigation potential is calculated using the

formula of Bhandari and Bam (2013). CO
2
 mitigation

potentialŠ§ SOC × 3.67.

Statistical Analysis

The effects of land use type and soil depth on
soil physical and chemical parameters were tested

Table 1. Physical properties of the soil under different land use and land cover.

Land use types 
Soil depth 

 (cm) 
Textural class 

Moisture content 
(%) 

BD  
(gm cm-3) 

Sal forest  

0-15 Clay loam 20.02 1.70 
16-40 Clay loam 19.98 1.85 
41-70 Clay loam 19.73 1.93 

Social forest  

0-15 Loam 22.25 1.73 

16-40 Clay loam 21.05 1.95 
41-70 Loam 19.88 2.02 

Orchard 
0-15 Clay 23.26 1.80 
16-40 Clay loam 21.89 1.87 
41-70 Clay loam 21.56 1.96 

Bare land 

0-15 Clay loam 18.76 1.65 
16-40 Loam 18.25 1.71 

41-70 Clay loam 18.03 1.70 

Agriculture 
land 

0-15 Loam 20.46 1.66 
16-40 Clay 19.91 1.65 
41-70 Loam 18.35 1.78 

Protected 
Area 

0-15 Loam 21.24 1.97 
16-40 Clay loam 20.18 2.02 
41-70 Clay loam 20.24 2.20 

Build up 
Area 

0-15 Clay loam 19.57 1.57 
16-40 Clay loam 19.32 1.51 
41-70 Clay loam 19.04 1.62 
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using one-way ANOVA. Where significant
differences were detected (p < 0.05), Tukey’s
Honest Significant Difference (HSD) test was used
as a post hoc procedure to identify pairwise
differences among treatments. All statistical
analyses were performed using SPSS version 25.0
(IBM Corp., Armonk, NY, USA).

RESULTS AND DISCUSSION

Physical properties of soil

Soil texture

Table 1 summarizes the textural classification
of the soil samples. Of the 63 samples analyzed, 38
were classified as clay loam, nine as loam, and six
as clay.

Moisture content of soil

In the present study, the mean moisture content
was observed to follow the descending order:
orchard (22.24%) > social forest (21.06%) >
protected area (20.55%) > sal forest (19.91%) >
agricultural land (19.57%) > built-up area (19.31%)
> bare land (18.35%) (Table 1).

Bulk density (BD) of soil

Bulk density (BD) across different depths
varied by land use type, ranging from 1.70–1.93 g
cm-³ in sal forest, 1.73–2.02 g cm-³ in social forest,
1.80–1.96 g cm-³ in orchard, 1.65–1.71 g cm-³ in
bare land, 1.66–1.78 g cm-³ in agricultural land, 1.97–

2.20 g cm-³ in protected areas, and 1.57–1.62 g cm-³
in built-up areas (Table 1). A statistically significant
variation in bulk density was observed across soil
depths under different land use types (P < 0.05).
Bulk density ranged from 1.57 to 1.97 g cm-³ at 0–
15 cm, 1.51 to 2.02 g cm-³ at 16–40 cm, and 1.62 to
2.20 g cm-³ at 41–70 cm depths. The highest bulk
density (2.20 g cm-³) was recorded in protected areas
at 41–70 cm depth, while the lowest (1.57 g cm-³)
was observed in built-up areas at 0–15 cm depth.

Chemical properties of soil

Soil pH

Soil pH across all land use types ranged from
4.00 to 6.15 (Figure 2). The highest pH value (6.15)
was recorded in agricultural land at a depth of 41–
70 cm, while the lowest (4.00) was observed in
orchard soils at the 0–15 cm depth. Soil pH varied
significantly among land use types (P < 0.05) and
across soil depths. Specifically, pH ranged from 4.10
to 6.15 at 0–15 cm, 4.00 to 6.00 at 16–40 cm, and
4.10 to 5.15 at 41–70 cm.

Electrical Conductivity (EC)

The electrical conductivity (EC) of soils varied
across different land use types, ranging from 0.37–
0.50 dS m-1 in sal forest, 0.32–0.64 dS m-1 in social
forest, 0.53–0.82 dS m-1 in orchard, 0.37–0.41 dS
m-1 in bare land, 0.24–0.39 dS m-1 in agricultural
land, 0.18–0.33 dS m-1 in protected areas, and 0.58–
0.70 dS m-1 in built-up areas (Figure 3). The results
indicated significant variation in EC values across

Figure 2. pH of soils under different land use types. : 0-15 cm, :16-40 cm, : 41-70 cm.
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both land use types and soil depths (P < 0.05). At
the 0–15 cm depth, EC ranged from 0.33 to 0.70 dS
m-1, with an average of 0.54 dS m-1. At 16–40 cm, it
varied from 0.24 to 0.78 dS m-1 (mean: 0.45 dS m-1),
and at 41–70 cm, it ranged from 0.18 to 0.70 dS m-1,
with an average of 0.39 dS m-1. The highest EC
value (0.82 dS m-1) was recorded in orchard land at
the 0–15 cm depth, while the lowest value (0.18 dS
m-1) was observed in the protected area at 41–70
cm depth.

Total Nitrogen Content (N)

The total nitrogen content across all land use
types ranged from 0.035% to 0.111% (Figure 4).
The highest concentration was observed in the
surface soil (0–15 cm depth) of bare land (0.111%),
followed by orchard land (0.104%). In contrast, the
lowest value (0.035%) was recorded in the subsoil
(41–100 cm) of the sal forest. Total nitrogen content
varied significantly (P < 0.05) among different land

Figure 3. Electrical conductivity of soils under different land use types. : 0-15 cm, :16-40 cm, : 41-70 cm.

Figure 4. Nitrogen content of soils under different land use types. : 0-15 cm, :16-40 cm, : 41-70 cm.
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use types. Nitrogen content also showed significant
variation with soil depth (P < 0.05). The highest
concentration was found in the topsoil layer (0–15
cm), with a mean value of 0.082%. At 16–40 cm
depth, total nitrogen ranged from 0.050% to 0.076%,
averaging 0.061%, while at 41–70 cm depth, it
ranged from 0.035% to 0.076%, with a mean value
of 0.047%.

Available Phosphorus Content (P)

The available phosphorus content across all land
use types ranged from 2.2 to 118.59 ppm (Figure

5). The highest mean available phosphorus was
observed in surface soils (0-15 cm depth), and it
decreased with increasing soil depth. The maximum
available phosphorus, 118.59 ppm, was found in the
orchard at a depth of 0-15 cm, while the lowest, 2.2
ppm, was recorded in agricultural land at a depth of
41-70 cm. The available phosphorus ranged from
3.68 to 118.59 ppm in the 0-15 cm depth, 2.65 to
24.64 ppm in the 16-40 cm depth, and 2.2 to 20.75
ppm in the 41-70 cm depth. ANOVA results revealed
significant differences between land use types and
depths (P < 0.05).

Figure 5. Available phosphorus of soils under different land use types. : 0-15 cm, :16-40 cm, : 41-70
cm.

Figure 6. Exchangeable potassium of soils under different land use types. : 0-15 cm, :16-40 cm, : 41-
70 cm.
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Exchangeable Potassium Content (K)

The exchangeable potassium (K) content across
all land use types ranged from 0.142 to 0.470 meq
100g-1. The highest value, 0.470 meq 100g-1, was
observed in the built-up area at a depth of 41-70
cm, while the lowest value, 0.142 meq 100g-1, was
recorded in agricultural land at the same depth
(Figure 6). The exchangeable K content was
significantly affected by land use type (P < 0.05).
At the 0-15 cm soil depth, the exchangeable K
content ranged from 0.161 to 0.412 meq 100g-1, with
a mean of 0.264 meq 100g-1, indicating a medium
status of exchangeable K in the soil samples. For
the 16-40 cm soil depth, exchangeable K ranged
from 0.157 to 0.468 meq 100g-1, with a mean value
of 0.243 meq 100g-1. At 41-70 cm, the extractable
potassium content ranged from 0.142 to 0.470 meq
100g-1, with a mean of 0.241 meq 100g-1 (Figure 5).
Additionally, the extractable potassium content
varied significantly by soil depth (P < 0.05).

Available sulfur content (S)

The available sulfur across different land-use
and land-cover types ranged from 18.39 to 38.01
ppm (Figure 7). The highest value, 38.01 ppm, was
observed in the built-up area at a depth of 16-41
cm, while the lowest value, 18.39 ppm, was recorded
in the protected area at the same depth. The
distribution of sulfur followed the order: built-up area
> orchard > bare land > social forest > protected
area > sal forest > agricultural land in the Madhupur
tract. The range of available sulfur was 32.02 to

34.38 ppm at a depth of 0-15 cm, 18.38 to 38.01
ppm at 16-40 cm, and 25.63 to 33.22 ppm at 41-70
cm.

Organic Carbon Content (OC)

The organic carbon content of soil samples from
various land use types in the northern part of the
Madhupur tract ranged from 0.47% to 1.07%
(Figure 8). Among the different soil types in the
Madhupur tract, organic carbon in the sal forest
ranged from 0.49% to 0.97%, in the social forest
from 0.65% to 0.96%, in the orchard from 0.45%
to 1.06%, in bare land from 0.47% to 1.07%, in
agricultural land from 0.43% to 0.63%, in protected
areas from 0.50% to 0.64%, and in built-up areas
from 0.81% to 1.05%. At the 0-15 cm depth, organic
carbon content ranged from 0.97% to 1.05%, with
a mean of 0.90%. At a depth of 16-40 cm, it ranged
from 0.45% to 0.81%, with a mean of 0.63%. At
the 41-70 cm depth, the organic carbon content
ranged from 0.43% to 0.81%, with a mean value of
0.57% (Figure 7). The highest organic carbon
content (1.07%) was observed in the orchard at the
0-15 cm depth, while the lowest (0.43%) was
recorded in agricultural land at the 41-70 cm depth.

Soil Organic Carbon (SOC)

The organic carbon stock in soil samples from
different land use types in the northern part of the
Madhupur tract ranged from 13.20 to 78.73 Mg
ha-¹ (Table 2). The total soil organic carbon (SOC)
stock was recorded as 108.41 Mg ha-1 in sal forest,

Figure 7. Available Sulphur of soils under different land use types. : 0-15 cm,  :16-40 cm, : 41-70 cm.
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138.67 Mg ha-1 in social forest, 115.38 Mg ha-1 in
orchard, 102.77 Mg ha-¹ in bare land, 85.31 Mg
ha-¹ in agricultural land, 120.72 Mg ha-¹ in protected
area, and 134.04 Mg ha-¹ in built-up areas (Table
2). The highest total SOC was found in the social
forest (138.67 Mg ha-1), while the lowest was in
agricultural land (85.31 Mg ha-¹). Land use types
significantly influenced the SOC stock in the current
study, with changes in land use causing substantial
alterations in SOC density (P < 0.05). The results
also revealed that SOC varied by soil depth: from
13.20 to 28.49 Mg ha-1 at 0-15 cm, with a mean of
23.03 Mg ha-¹; from 21.04 to 35.59 Mg ha-¹ at 16-
40 cm, with a mean of 27.73 Mg ha-¹; and from
45.92 to 78.73 Mg ha-¹ at 41-70 cm, with a mean of
64.27 Mg ha-¹. The total SOC stock also exhibited
significant variation with soil depth (P < 0.05).

CO
2
 mitigation potential in different land use

types through C sequestration

The CO
2
 mitigation potential was 397.85 C Mg

ha-1 (13%), 508.93 C Mg ha-¹ (17%), 423.44 C Mg
ha-1 (14%), 377.16 C Mg ha-1 (13%), 313.11 C Mg
ha-1 (11%), 443.05 C Mg ha-1 (15%), and 491.92 C
Mg ha-1 (17%) for sal forest, social forest, orchard,
bare land, agricultural land, protected area, and built-
up area (Figure 9). The present study demonstrated
that social forests and built-up areas had significantly
(p < 0.05) higher potential to sequester atmospheric
carbon dioxide than other land-use types.

DISCUSSION

The observed variation in SOC and CO‚
mitigation potential across LULC types can be
explained by underlying ecological and management
processes. Forest-based systems (social forestry,
sal forest, and protected forest) consistently exhibited
the highest SOC levels. Mechanistically, this is
attributable to higher litterfall, root biomass inputs,
and minimal soil disturbance, all of which enhance
organic matter accumulation and stabilization
through aggregate formation and organo-mineral
interactions. In contrast, agricultural lands are
subjected to continuous tillage, crop residue removal,
and intensive fertilizer application. These practices
accelerate SOC mineralization, disrupt soil structure,
and ultimately lower carbon storage capacity. Built-
up areas demonstrated intermediate SOC values,
which may appear counterintuitive, but can be
explained by reduced erosion and organic inputs
from homestead vegetation, domestic waste
deposition, and limited soil turnover.

Statistical analyses further support these
mechanistic interpretations. SOC was significantly
and positively correlated with soil moisture (r = 0.62,
p < 0.01), total nitrogen (r = 0.71, p < 0.01), and
organic carbon percentage (r = 0.83, p < 0.001),
while being negatively correlated with bulk density
(r = –0.54, p < 0.05). Regression models indicated
that organic carbon percentage and total nitrogen
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are the strongest predictors of SOC, explaining over
65% of the variance. These findings highlight that
SOC is not only a product of land use type but also
of specific soil physicochemical properties shaped
by land management practices.

The implications for carbon management and
climate policy in Bangladesh are significant.
Enhancing SOC stocks through targeted land
management can provide a practical, locally
appropriate pathway for climate change mitigation.
For instance, promoting social forestry programs not
only boosts SOC sequestration but also supports rural
livelihoods, aligning with Bangladesh’s Nationally
Determined Contributions (NDCs) under the Paris
Agreement. Similarly, shifting from conventional to
conservation agriculture by adopting reduced tillage,
residue retention, and crop diversification could help
slow SOC depletion in croplands. Integrating SOC
monitoring into national greenhouse gas inventories
would strengthen the accuracy of carbon accounting
and inform adaptive land-use planning.

Overall, these results underscore the ecological
and policy relevance of LULC transitions. By
explicitly linking SOC dynamics to underlying soil
processes and regional climate strategies, our study
provides a framework for managing land resources
to enhance carbon sinks and support sustainable
development in the Meghna Basin and beyond.

CONCLUSIONS

This study investigated the impact of land-use
and land-cover changes on soil physical and chemical
properties and carbon sequestration potential in the
northern part of the Madhupur Tract. The physico-
chemical analysis showed that all soil samples from
various land use types in the region were acidic,
with medium to high clay content, indicative of highly
weathered soils. Significant variations were observed
in bulk density, moisture content, soil pH, electrical
conductivity (EC), total nitrogen (N), available
phosphorus (P), exchangeable potassium (K),
available sulfur (S), organic carbon (OC) content
(%), total organic carbon (Mg ha-1), and CO‚
mitigation potential across different soil depths. The
surface layer exhibited the highest concentrations
of most soil parameters. Among the essential
nutrients, organic carbon content ranged from low
to medium, total nitrogen from very low to low,
available phosphorus from very low to optimum,
exchangeable potassium was predominantly very
low, and available sulfur ranged from very low to
medium. Overall, the results suggest that soil organic
carbon (OC) was influenced by land-use type, with
cultivation leading to OC depletion. However, this

does not necessarily imply a loss of stable organic
carbon. Less disturbed native soils do not always
result in enhanced OC storage, as this depends on
factors such as vegetation cover, management
practices, and soil type. Both land use and soil depth
significantly influenced SOC. The total SOC followed
this order: social forest > built-up area > protected
area > orchard > sal forest > bare land > agricultural
land, with SOC values of 138.67, 134.04, 120.72,
115.38, 108.41, 102.77, and 85.31 Mg ha-1,
respectively. Bulk density (BD) increased with soil
depth for all land uses, while the percentage of soil
organic carbon decreased with increasing soil depth.
It indicates that BD governs the quantity of organic
carbon stored in soil, and that land use influences
this quantity. Therefore, implementing appropriate
land-use strategies and sustainable soil management
practices is crucial for enhancing SOC storage
capacity across different land-use systems.

The study also showed that soils in social forests
and built-up areas had significantly (p < 0.05) higher
CO

2 
sequestration potential than those in other land-

use types. It suggests that conditions favorable to
increased vegetative cover, with minimal
anthropogenic disturbance, promote greater soil
carbon sequestration. In conclusion, land-use
changes significantly affect soil carbon storage by
altering vegetation, which, in turn, affects carbon
inputs and outputs. Efforts should focus on
implementing appropriate land-use management
practices, such as applying biofertilizers and organic
manure, to enhance SOC content. Converting
agricultural land to managed perennial plantations
can further increase soil carbon stocks. Effective
land use management is critical for preserving
existing soil carbon, and forest regions, in particular,
have a great capacity to sequester carbon. This
capacity can be further expanded through effective
land-use management, helping these areas contribute
to CO

2 
mitigation.
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