Available online at:
http://journal.unila.ac.id/index.php/tropicalsoil
DOI: 10.5400/jts.2025.v30i3.159-173

Integrating Soil Properties and Vegetation Indices for Modeling
Potato Productivity

Sudarto!, Aditya Nugraha Putra'**, Dwi Christina Fauziah', Agung Nugroho', Adithya Riefanto
Suryoprojo!, Novandi Rizky Prasetya® and Michelle Talisia Sugiarto*

'Department of Soil Science, Faculty of Agriculture, Brawijaya University, Malang 65145, Indonesia
? Department of Land and Water Resources Management, Faculty of Civil Engineering, Slovak University of
Technology in Bratislava, Bratislava 81005, Slovakia
*Doctoral Program in Agricultural Science, *Soil and Water Management Study Program, Faculty of Agriculture,
Brawijaya University, Veteran Street, Malang 65145, Indonesia

*email: aditya.n.putra@ub.ac.id

Received 18 June 2025 Revised 23 September 2025; Accepted 24 September 2025

ABSTRACT

Global potato production reached approximately 383 million metric tons in 2025, with Indonesia contributing around
1.22 million metric tons (0.32% of global output). However, the sustainability of Indonesia’s potato production is
increasingly threatened by soil quality degradation in key growing regions. Existing predictive studies have prima-
rily focused on soil chemical properties, with limited incorporation of remote sensing technologies. This study
investigates the potential of Unmanned Aerial Vehicle (UAV) as a high-resolution, non-destructive tool for estimat-
ing potato yield using vegetation index transformations. Utilizing a split-plot experimental design across elevation
gradients, we integrated soil properties with UAV-derived vegetation indices— Visible Atmospherically Resistant
Index (VARI), Green Leaf Index (GLI), and Normalized Green-Red Difference Index (NGRDI). Results reveal that total
nitrogen, base saturation, and bulk density significantly influence yield variability, and can be accurately estimated
using NGRDI, GLI, and a modified GLI (GLI CS), respectively. A multiple linear regression model was developed to
predict potato yield=24.22 + 7.26(NGRDI) + 9.87(GLI) + 28.42(GLI CS). This research demonstrates the efficacy of
UAV-based spectral analysis in improving yield-prediction models, offering a scalable, precise approach for sus-
tainable potato cultivation. Future work should incorporate machine learning to improve model robustness and
assess applicability across varied agro-ecological contexts.
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INTRODUCTION

Potato (Solanum tuberosum) is a globally
important crop, yet its production in Indonesia
remains suboptimal despite the availability of vast
agricultural land. While major producers like China
and India yield tens of millions of tons annually,
Indonesia’s output lags significantly, highlighting
inefficiencies in cultivation practices (FAOSTAT,
2019). This gap underscores the urgent need for
innovative approaches to improve potato
productivity.

Indonesia’s increasing potato demand is not
met by sufficient domestic production, leading to a
reliance on imports. Between 2014 and 2017,
national production declined from 1.35 million t to
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1.16 million t, fulfilling only about 10% of total
consumption (Statistic Indonesia, 2017). This decline
is primarily due to soil degradation, erosion, and
inefficient nutrient management, all of which reduce
yield potential. Given these challenges, immediate
interventions are required to enhance soil fertility,
optimize nutrient input, and improve overall
productivity.

By using UAV-derived vegetation indices—
VARI, GLI, and NGRDI—alongside soil physical
properties, this research aims to develop a high-
accuracy model for yield potential estimation. Unlike
conventional agronomic approaches, this method
provides a data-driven framework for site-specific
nutrient management, optimizing resources while
improving sustainability. Recent studies have
emphasized the advantages of UAV-based
monitoring in agriculture, particularly in assessing
soil conditions and crop health (Li et al., 2021; Njane
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et al., 2023). Geo-Al further reinforces these
approaches, which integrate remote sensing indices
and environmental covariates to accurately predict
soil nitrogen status —a crucial factor for yield
estimation (Prasetya et al., 2025). These
technological advancements offer promising
opportunities to bridge the productivity gap in
Indonesia’s potato sector.

Recent advances in remote sensing have
demonstrated promising outcomes in estimating
potato yield and growth traits. For example, Tatsumi
& Usami (2024) successfully combined UAV-based
RGB and hyperspectral imaging with machine
learning to model above-ground biomass and yield
(R? substantial). Moreover, Mukiibi et al. (2025)
highlighted that vegetation indices strongly correlate
with tuber yield, especially when measured during
critical growth stages. Additionally, Li et al. (2021)
improved yield prediction by integrating cultivar
information with UAV multispectral data using
machine learning, achieving validation R? values up
t0 0.79

Precision agriculture is rapidly transforming the
global farming landscape. The adoption of UAV-
based remote sensing allows for more accurate soil
analysis and real-time monitoring of crop growth.
In a recent study, UAV images were successfully
used to predict potato yield and morphological
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Figure 1. Research area in Sumber Brantas Village, Bumiaji Sub Districts, Batu City.

point B, # : plotpoint C.

quality, highlighting the technology’s effectiveness
in precision farming (Ccopi et al., 2024). Additionally,
systematic reviews on vegetation indices for potato
growth monitoring indicate that integrating remote
sensing with traditional farming practices enhances
decision-making and resource allocation (Mukiibi et
al., 2025). These findings underscore the relevance
of'this study to modern agricultural challenges and
solutions.

Despite these technological advances, a notable
research gap persists in studies combining RGB-
based vegetation indices (e.g., VARI, GLI, NGRDI)
with soil physical properties to estimate potato yield.
Most existing literature focuses on multispectral or
hyperspectral indices (e.g., NDVI, NDRE, red-edge,
GNDVI), which require more costly sensors. Our
study addresses this gap by proposing a cost-
effective, scalable, and field-friendly approach that
uses widely accessible RGB imagery and key soil
metrics.

By implementing advanced remote sensing
technologies and precision agriculture approaches,
this research aims to develop a practical, scalable
model adaptable across regions and production
systems to improve potato productivity in Indonesia.
Future developments may include integrating
machine learning algorithms to enhance predictive
accuracy, thereby supporting data-driven decision-
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making in agriculture. The findings from this study
are expected to contribute significantly to sustainable
farming practices, ensuring food security while
minimizing environmental degradation. Furthermore,
this approach could serve as a foundation for similar
applications in other crops, reinforcing Indonesia’s
position in global agricultural innovation.

MATERIALS AND METHODS

Research Location and UAV Flight Information

The research was conducted in Sumber Brantas
Village, Bumiaji Subdistrict, Batu City, East Java,
an area known for being one of Indonesia’s largest
potato centers, as shown in Figure 1. Data was
collected with precise observation points determined
using a Garmin 78s GPS device. Aerial images were
captured at 75 meters above sea level using a DJI
Phantom 3 Pro drone with a 12 MP camera, which
was set on a pre-programmed flight path. The
region’s climate, with average rainfall of 2,000 to
2,500 millimeters and temperatures between 18°C
and 24°C, supports potato cultivation. The volcanic
soils in the area are rich in nutrients, further
enhancing the suitability for potato farming.

Experimental Design

This research employed a split-plot experimental
design with an altitude-based factorial treatment
pattern (Jones & Nachtsheim, 2009), consisting of
three main altitude categories: <1800 ma.s.l., 1800-
1900 m a.s.l., and >1900 m a.s.l. The selection of
observation locations was based on the highest potato
productivity in Bumiaji District (Statistics of Batu

City, 2018). The sampling was conducted in 6.25
m? tile plots within each observation plot, as
illustrated in Figure 2 (Statistic of Batu City, 2018),
to assess potato crop production. Soil sampling was
carried out using stratified random sampling (Rayes,
20006), with 120 sampling points established for crop
assessment. The stratification was based on
vegetation index values, which were divided into
seven distinct classes ranging from Class 1 (very
low vegetation, e.g., bare soil or poor crop cover),
Class 2 (low vegetation, sparse or stressed crops),
Class 3 (moderately low vegetation, below average
crop growth), up to Class 7 (very high vegetation,
representing dense and healthy crop cover). This
classification ensured that the sampling represented
the full spectrum of crop vigor conditions, thereby
reducing bias and improving dataset
representativeness.

Soil Characteristics Analysis

The soil characteristics assessed in this study
included total nitrogen content (TN) using the
Kjeldahl method (%) (Bremner & Mulvaney, 1982),
and available phosphorus (Available-P) determined
using the Bray I/Il method (mg kg') (Bray & Kurtz,
1945) and Olsen’s method (Olsen, 1954).
Exchangeable potassium (Exchangeable-K) was
measured using IN NH,OAc at pH 7 (cmol kg™)
(Soil Conservation Service, 1984). Organic carbon
content (C-Organic) was determined following the
methods outlined by Black et al. (1965) and Nelson
& Sommers (1982). The cation exchange capacity
(CEC) was evaluated through extraction with 1N
NH,OAc at pH 7 (cmol kg™'), while the soil pH in
water (pH H,0O) was measured using the method
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Figure 2. Tile plots in each observation plot with a size of 6.25 m?.
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described by Peech (1965). Base saturation
percentage was calculated based on the
exchangeable concentrations of calcium
(Exchangeable-Ca), magnesium (Exchangeable-
Mg), and sodium (Exchangeable-Na), extracted with
IN NH,, OAc at pH 7 (cmol kg') (Soil Conservation
Service, 1984; Houba et al., 1988; Holmgren et al.,
1977; Soil Survey Staff, 2014). Soil bulk density (g
cm?) was determined following the procedures
outlined by Blake and Hartge (1986), Klute (2018),
and Soil Survey Staff (2014), while soil particle
density was measured using a pycnometer (g cm?)
(Black et al., 1965; Gee & Bauder, 1986). Soil
porosity percentage was calculated following the
method of Nimmo (2013), and soil penetration
resistance was measured using a hand penetrometer
(MPa) as outlined by Kees (2005).

Spatial Interpolation of Soil Properties

Point measurements (n = 120) were interpolated
using ordinary kriging ona 10 m grid in ArcGIS 10.6.
Experimental semivariograms were computed for
each soil property, and spherical models were fitted
after checking for normality. Both chemical (total
nitrogen, available phosphorus, exchangeable
potassium, base saturation, cation exchange capacity,
pH, and organic carbon) and physical (soil
penetration resistance, bulk density, and porosity)
soil properties were mapped. Spatial mapping was
carried out in ArcGIS 10.6 using UTM Zone 49S
(EPSG:32749) coordinates.

Index Transformation

Agisoft was used to analyze aerial imagery,
which involved stitching multiple photographs into a
single orthomosaic (Zhang et al., 2023). The aerial

AIR PHOTO RESULTS OF UAF RECORDING IN
BUMIAJI KECAMATAN KOTA BATU
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Figure 3. Aerial Photo Recording on October 28,2019.

photo taken on October 28, 2019 (Figure 3) was
used as a visual reference to support field
observations and spatial analysis Subsequently,
vegetation index transformations were applied,
including the Normalized Green-Red Difference
Index (Li et al., 2021), Green Leaf Index (Nguy-
Robertson et al., 2012), and Visible Atmospherically
Resistant Index (Li et al., 2024). The calculation of
these indices was performed using the following
equations:

In this study, vegetation indices were calculated
from reflectance values in UAV-derived imagery,
where G, R, and B represent the reflectance values
of the Green, Red, and Blue spectral bands,
respectively.

Image Quality Improvement Scenario Results

A scenario aimed at improving image quality
was implemented to reduce noise and opacity, and
to prevent images from being either too dark or too
bright during recording. This was particularly
important for parameters that correlate with potato
plant productivity. Several image enhancement
methods were tested to address these issues and
improve the quality of the data used for analysis.

Contrast stretching is a technique that creates
a new image FO(x,y)F_0(x, y)FO (x,y) with better
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contrast than the original image F1(x,y)F_1(x, y)F1
(x,y) (Purba, 2017). For example, an input range of
55-255 was stretched to 0-255. Various methods
were used for this enhancement, including linear,
piecewise linear, Gaussian, equalization, and square
root methods, all available in ENVI Classic 5.3.
These results will be further explored in regression
testing and model equation formulation.

Statistical Analysis

The vegetation index transformation results
were subsequently subjected to correlation and
regression statistical analysis using Genstat 10.4,
with comparisons made to laboratory data
correlating with potato crop production. Initially,
laboratory results and the normality test for potato
production were analyzed in Genstat 10.4 using the
Anderson-Darling test (Anderson & Darling, 1954)
to assess the distribution and sample data. The
regression analysis was then performed, and the
resulting equation was derived using the method
outlined by Bewick et al. (2003). This equation was
utilized to estimate potato crop production.
Additionally, the resulting equation was further
processed using map algebra in ArcMap 10.6 to
produce a spatial distribution. The model estimation
was validated using a paired t-test (Montolalu &
Langi, 2018).

RESULTS AND DISCUSSION

Potato Productivity

The observed potato productivity in Bumiaji
Sub-district ranged from 13.06 to 31.23 Mg ha’!,
with an overall average yield of 24.08 + 4.78 Mg
ha’!. This figure is slightly lower than the reported
average productivity of the Granola potato variety,
which reaches 26.5 Mg ha! (Badan Litbang
Pertanian, 2018). When comparing plots, Plot C
recorded the highest productivity (25.73 £ 3.83 Mg
ha'), followed by Plot B (24.33 + 4.56 Mg ha™!),
while Plot A exhibited the lowest yield (22.19 +5.34
Mg ha') and the most tremendous variability. These
results indicate that productivity in Bumiaji fluctuates
between plots, with environmental and management
factors in Plot C likely contributing to its relatively
higher and more stable yield performance. These
discrepancies in yield can be attributed to a
combination of factors, including but not limited to
irrigation practices, soil type, soil compaction levels,
nutrient availability from fertilizers, and the specific
varieties planted. Additionally, environmental
variability significantly influences the overall
productivity of potato crops. As noted by recent

studies (Xie et al., 2021), the interactions among
these factors are complex and context-dependent,
and thus a holistic approach to managing agricultural
systems is critical for optimizing crop yields. It is
essential to investigate these variables further,
particularly irrigation and soil management practices,
to identify potential avenues to improve productivity
in this region. Moreover, despite the influence of
environmental and agronomic factors, there remains
a pressing need for more refined agricultural
techniques and strategies to mitigate these challenges
and enhance the sustainability of potato production
in the face of climate change.

Spatial distribution of soil nutrients

The soil nutrient content at the observation site
revealed an average TN of 0.33% (classified as
medium), available phosphorus (Available-P) of 6.15
mg kg! (also medium), and exchangeable potassium
(Exchangeable-K) of 0.40 me 100g{ ' (moderate).
These results provide important insight into soil
fertility at the study location, indicating that the soil
has a relatively balanced supply of essential nutrients
for plant growth. However, improvements in nutrient
management could be considered to optimize crop
production.

The distribution of TN, Available-P, and
Exchangeable-K data was classified based on
nutrient status criteria provided by the Soil Research
Institute (2009), and the spatial variation of these
nutrients was visualized through interpolation
methods as illustrated in Figure 4.1 (Nitrogen),
Figure 4.2 (Phosphorus), and Figure 4.3 (Potassium).
This approach not only highlights the spatial
heterogeneity of soil nutrients but also underscores
the importance of accounting for local nutrient
conditions when managing agricultural practices,
particularly for crops such as potatoes, which are
highly sensitive to nutrient availability.

Moreover, while soil nutrient levels appear
adequate for potato cultivation, it is essential to
critically evaluate the dynamic interactions among
soil properties, environmental factors, and crop
requirements. Future research could further explore
the mechanisms underlying nutrient uptake
efficiency and its relationship with soil texture and
organic matter content. Additionally, the findings
underscore the need for tailored fertilization
strategies to address potential imbalances,
particularly phosphorus, which may influence potato
yield and quality in the long term.

Spatial distribution of soil chemical properties

The soil pH analysis revealed an average value
of 5.43, indicating an acidic soil environment. In
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Figure 4. Spatial distribution of soil nutrients: 3.1 Total nitrogen (%), 3.2 Available phosphorus (mgkg?!), and

3.3 Exchangeable potassium (me 100g™). 1.

: contour Sm, I low (0.1-0.2%), [1: medium

(0.21-0.5%). 2.

(8-10 mg kg™), 71 high (11-15 mg kg™'), B: highest (>15 mg kg™"). 3.
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contrast, the organic carbon content (C-Organic)
was measured at an impressive 3.24%, which is
considered high, alongside a cation exchange
capacity (CEC) of 29.14 me 100g™, also categorized
as high. However, land base saturation was
relatively low, averaging 27.66%. These results
suggest that while the soil’s capacity for nutrient
retention, as indicated by C-Organic and CEC,
supports the potential for productive crop growth,
the low base saturation may limit the soil’s ability to
maintain optimal nutrient availability over time.

However, while the retention of C-organic and
CEC are vital factors influencing crop suitability, the
pH and base saturation did not meet optimal
thresholds for ideal potato growth, necessitating
further investigation into soil management strategies
to enhance these characteristics.

Nutrient retention data were classified according
to the criteria provided by the Soil Research Institute
(2009), and the results were interpolated and
visualized in Figures 5.1 (Base Saturation), 5.2
(CEC), 5.3 (pH), and 5.4 (C-Organic). These figures
illustrate the spatial variability and distribution of soil
properties, which are crucial for understanding the
broader implications for agricultural practices. It is
important to note that although C-Organic and CEC
are positively correlated with soil fertility and crop
yield, the current low base saturation could pose
challenges to nutrient balance, potentially affecting
long-term sustainability in potato production. This
highlights the need for targeted soil amendments and
management practices to address these deficiencies
and improve overall soil health.

As such, these findings present a clear
opportunity to explore more effective soil
conditioning techniques, such as lime or organic
amendments, to correct pH and improve base
saturation. Additionally, future research should focus
on the interaction between these soil properties and
crop performance under different management
regimes, in order to further refine soil fertility models
and optimize potato cultivation in this region.

Spatial distribution of soil physical properties

Field observations and laboratory analyses were
conducted to examine various soil characteristics,
including soil density parameters. The results
indicated an average penetration value of 0.29 MP,
suggesting moderate soil resistance to penetration.
Soil bulk density was recorded at 0.86 g cm?, while
soil particle density was measured at 2.13 g cm?,
indicating a mineral soil composition. The soil’s
porosity was found to be 59.42%, highlighting the

significant potential for water retention and root
growth.

In terms of soil density distribution, the data was
classified following the criteria established by the
(Soil Survey Staff, 2022). The results were then
interpolated to produce visual representations of the
penetration, bulk density, and porosity variations
across the study area, as shown in Figures 6.1
(Penetration), Figures 6.2 (Bulk Density), and
Figures 6.3 (Porosity). This interpolation is crucial
for understanding the spatial variability of these
properties, which are directly linked to soil health
and crop productivity. However, it is essential to
recognize that soil density alone does not provide a
complete picture of soil fertility or its suitability for
specific crops; thus, it should be considered alongside
other agronomic and environmental factors. Further
investigation into the interactions between these soil
properties and climatic conditions could offer deeper
insights into optimizing agricultural practices in this
region.

Vegetation Indices Value Extraction

The UAV imagery was processed to compute
the vegetation indices (NGRDI, GLI, and VARI)
based on reflectance values. The nominal range for
the red spectrum varied from 73 to 254, while the
green spectrum spanned from 94 to 247, and the
blue spectrum had a nominal range of 70 to 249. All
index transformation values followed a similar
pattern, ranging from -1 to 1. In a related study using
RGB UAV imagery to classify the number of flowers
for oilseed extraction, the vegetation indices
employed were NGDRI, GLI, and VARI (Ribeiro
et al., 2023). The correlation analysis revealed a
strong positive relationship between the NGRDI and
VARI indices, with a correlation coefficient of r =
0.99. Conversely, NGRDI and GLI showed a
negative correlation of r = -0.64, while VARI and
GLI exhibited an even stronger negative correlation,
withr=-0.7. These findings underscore the variable
predictive capabilities of the indices, with VARI
proving the most effective at estimating flower
production, achieving an R? of 0.88 and a Root Mean
Square Error of Prediction (RMSEP) of 19.78,
followed by NGRDI and GLI (Ribeiro et al., 2023).

Correlation Between Potato Productivity and
Parameter Observation

The analysis of the correlation between potato
plant productivity and various soil parameters
revealed significant positive relationships with TN,
BS, soil penetration resistance, and BD (Table 1).
The correlation coefficient (r) values exceeded the
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critical value of the r-table (0.37), confirming the ~ important to consider the potential influence of
strength of these associations. unmeasured factors, such as environmental

These findings emphasize the crucial roles of ~ variables and management practices, which may also
soil properties and plant nutrient content in  contribute to observed variations in crop yield.
determining potato plant productivity. However, itis ~ Moreover, while soil fertility and nutrient availability,
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particularly nitrogen, appear to influence potato
growth significantly, the complexity of nutrient
interactions and the roles of other micronutrients
warrant further exploration in future studies to
deepen our understanding of their combined effects
on agricultural productivity.

Correlation Between the Index Transformation
and Potato Plant Productivity

The parameter observations showed a
correlation with potato plant productivity, prompting
further testing to explore more advanced correlations
with vegetation indices. The correlation tests showed
that only three parameters were significantly related
to the land indices. Specifically, TN showed the
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Figure 7. Regression analysis between soil proper-
ties and potato productivity

highest correlation with the Normalized Green-Red
Difference Index (NGRDI) at 0.37; BS was most
strongly correlated with the Green Leaf Index (GLI)
at 0.22; and BD correlated with GLI at -0.25 (Table
2). These results suggest that soil properties such
as nitrogen content, base saturation, and bulk density
influence the vegetative indices associated with land
productivity.

Several factors may account for these lower
correlations, such as limitations in the quality of the
UAV images or unmeasured environmental
influences. To address this, a re-capture of UAV
images is planned, with an emphasis on improving
the image quality. It is anticipated that improving
UAV imagery will yield more accurate data, thereby
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Figure 8. Regression analysis between soil proper-
ties and potato productivity.
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increasing correlation values and enabling a more
robust analysis of the relationship between plant
productivity and remote sensing indices.

The Role of Soil Characteristics in Potato
Productivity

Potato productivity is strongly influenced by soil
characteristics, which directly and indirectly affect
vegetative growth, tuber development, and final
yield. Based on regression analysis, several soil
properties exhibit significant relationships with potato
productivity (Figure 7). BS demonstrates a
moderately strong positive correlation with
productivity (R? = 0.42, RMSE = 0.76 Mg ha’,
nRMSE = 18.3%), indicating that increased base
saturation—reflecting the availability of basic cations
such as Ca?z , Mg?z , Kz , and Naz —plays an
important role in supporting optimal potato growth.
These cations help neutralize soil acidity and improve
the availability of essential nutrients. Conversely, BD
shows a negative correlation with productivity (R?
=0.30, RMSE = 0.89 Mg ha', nRMSE = 21.4%)).
Higher bulk density is associated with compacted
soils that limit root penetration, water movement,
and air diffusion. Such conditions restrict the plant’s
ability to access water and nutrients efficiently,
ultimately reducing tuber formation and yield
potential. TN also exhibits a positive relationship with
productivity (R? = 0.23, RMSE = 1.02 Mg ha’,
nRMSE = 24.5%), underscoring the importance of
nitrogen availability for vegetative growth and tuber
development. However, this correlation is weaker
than that of base saturation, possibly due to
variations in nitrogen uptake efficiency or
interactions with other limiting factors such as water
availability and soil physical condition. Vegetation

668850 669000 669150 669450

indices such as the Normalized Green-Red
Difference Index (NGRDI) and the Green Leaf
Index (GLI) are used as indicators of crop canopy
vigor. NGRDI shows a weak positive correlation
with TN (R2=0.14, RMSE = 1.15 Mgha'!, nRMSE
= 27.8%), while GLI has a very weak relationship
with BS (R2=0.05, RMSE = 1.28 Mg ha'!, nRMSE
= 31.0%) and a slightly negative correlation with
BD (R?=0.16, RMSE = 1.11 Mg ha!, nRMSE =
26.3%) (Figure 8). These findings suggest that
vegetation indices may be less sensitive in detecting
variation in soil chemical and physical properties,
and are likely influenced by multiple interacting
factors beyond soil fertility alone.

Compilation of Formulas Obtained

This section will explain the formula used to
prepare the estimation model map. The estimates
of potato crop productivity based on TN, BS, and
BD are shown in the figure, ranging from red to
green, while the white-to-gray areas are not potato
fields (Figure 9). The green color indicated areas
with high production values. The range of
productivity of potato plants produced is from 9 Mg
ha! to 40 Mg ha'..

The regression results for potato plant
productivity and the parameters were combined with
the equations obtained from the parameter indices.
The results of the equation were Potato Plant
Productivity =27.80 + 12.10 [0.60 (NGRDI) + 0.34]
+ 0.18 [54,83 (GLI) + 26,49] — 14.00 [-2.03 (GLI
CS) + 0.89], and then it was simplified to Potato
Plant Productivity = 24.22 + 7.26 (NGRDI) + 9.87
(GLI) + 28.42 (GLI CS). The equation obtained a
coefficient of determination (R?=0.508) and a Root
Mean Square Error (RMSE = 4.25 Mg ha). This
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indicates that the model explains about 51% of the
variation in potato productivity, with an average
prediction error of approximately 4.25 Mg ha'.

Model Validation Test

The validation test was conducted to determine
whether the model’s estimate was obtained. The
validation test was completed using a paired t-test
to compare the field-average productivity with the
model results. The average potato plant productivity
in the area was 24.85 Mg ha''. The model’s average
estimate based on TN, BS, and BD was 25.12 Mg
ha-1, with a t-test result of 0.29 and a t-table value
of 2.26. The test results indicated that the t-count
was less than the t-table value. It means the
estimation model results were not much different
from field conditions. Therefore, the estimation
model equation could be used to estimate potato plant
productivity.

Best Formula Model

The best formula to estimate potato plant
productivity is soil total nitrogen (ground with
NGRDI), base saturation (GLI), and bulk density
(GLI CS). The resulting R? is relatively low, at 5%
to 51%. One factor that affected the results was
the uneven distribution of data on potato plant
productivity, as farmers grew various commodities,
including potatoes, cabbage, carrots, and others.
There were disastrous local whirlwinds on June 19
and October 20, 2019, which caused crop failure
among farmers. The windstorm disaster lifted the
topsoil (Richa, 2019). Other factors that do not affect
the maximum include environmental factors, aerial
photography, and other unpredictable factors. In the
opinion of Kelcey and Lucieer (2012), several
factors affect the analysis results. Topography,
landforms, and the degree of solar radiation influence
environmental factors. Factors influenced by the
UAV’s image capture lens aperture, exposure
settings, and the amount of reflection spectral
response obtained on the lens. The differences in
spectral response were caused by varying levels of
brightness and color balance, resulting in a base color
and contrast that were not sharp (Niethammer et
al.,2012).

Moreover, estimates based on RGB-based
UAVs to transform into NGRDI, GLI, and VARI
are not widely used for prediction because they rely
on 660 nm reflectance, which corresponds only to
the Red component (Shofiyanti, 2011). The index
commonly used for estimation models is a Near
Infra-Red (NIR) index with an electromagnetic
wavelength of 780-2500 nm (Nicolai et al., 2007).

The NIR components had higher wavelengths than
the RGB bands; the higher the wavelength, the better
the soil reflectance. Another factor influencing the
land’s reflectance characteristics in the aerial photo
is the presence of organic material, soil moisture
levels, soil iron oxide content, and soil surface
structure (Huete & Glenn, 2011). Soil conditions and
differences in altitude affected the vegetation index
that was generated. These field conditions
qualitatively indicate that land surface factors and
topography can cause disturbances (Wiratmoko,
2015). Soil conditions in Bumiaji are pretty varied,
with farmers’ different cultivation and land
management practices leading to changes in soil
conditions across the area. The diverse topography
and elevation also influenced the results at 1700,
1800, and 1900 m a.s.l. The estimation model, tested
for validity, can be applied in the field despite a
relatively low coefficient of determination.

Relationship Between Productivity Potato and
Parameters

Potato productivity was not significantly
correlated with any of the observation parameters.
The only nutrient related to potato plant productivity
was TN. This condition was due to the N function
in the protein synthesis of potato crops to help
improve yield growth. In contrast, P and K nutrients
did not affect potatoes’ increased production
(Bagherzadeh et al., 2018). The high availability of
nutrients does not necessarily influence the high or
low productivity of potato plants, and not all available
nutrients can increase the productivity of potato
plants (Koch et al., 2020)

The nutrient retention that correlates with the
productivity of potato plants was only BS, where if
BS was higher, the soil would be more fertile (Jahan
etal., 2016). Soils with low BS show more sorption
complexes filled with acid cations such as Al and
H; too many acid cations, especially Al, can cause
toxicity to plants (Ghorbani et al., 2024). The use of
lime on acid soils and the increase in BS have a
positive effect on potato production because the
addition of lime increases pH, which reduces Al
phytotoxic levels’ toxicity. While other variables such
as pH, C-organic, CEC have a positive relationship
with potato productivity but are not significantly
related. This condition was not appropriate in several
other studies. An increasing pH can reduce the
toxicity of phytotoxic pH levels and increase
production. Potato productivity with pH does not
have a significant relationship, probably because the
pH in the study area tends to be low and not suitable
for potato plants (Nduwumuremyi et al., 2013).
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Soil density, which has a relationship with
potato productivity, is BD, but the relationship value
obtained shows the opposite. This condition means
that if the bulk density value increased, it would
decrease productivity gains. This condition was
appropriate because if the soil is getting congested,
then the potato tuber formation would be inhibited.
High soil density would result in the suboptimal
quality of tubers (Stark et al., 2020). This condition
is appropriate because if the soil is denser, the
formation of potato tubers would be increasingly
hampered. High soil density will cause the quality
of the tubers produced to be less than optimal (Stark
et al., 2020), and BD would affect the level of
stability of soil aggregates where it would hamper
the ability of the soil to pass water, which causes
calm water. Flooding of water would cause the
resulting tubers’ quality to decrease (Richard et al.,
2001).

Production Potential and Level of Reliability

Potato productivity in the District of Bumiaji
based on measurements in the field obtained 24.85
t ha!. In contrast, the results obtained from the
average estimation of the equation model are 24.19
t ha'. Results productivity estimates some results
are inconsistent with productivity in the field, but
this value is not much different from the average
productivity of potato plants. Production potential
by optimizing the process of cultivation of potato
varieties of granola able to produce average
productivity of 26.5 t ha! (Badan Litbang Pertanian,
2018). Meanwhile, the results of a national
assessment of the potential productivity of 16.7 t
ha'! with the potential productivity in the province
of East Java at 13.21 t ha' (Direktorat Jendral
Hortikultura 2009) and the productivity of the potato
cropin 2017 and 2018 amounted to 19.16 tha! and
19.24 tha'! (Badan Pusat Statistik Kota Batu, 2018).
Comparing the results of the potato crop productivity
in Batu City can be said to be optimal on the national
and regional scale.

The reliability estimation models tested showed
that the model applied was not different from the
conditions in the field as the result of t-counting was
less than t-table. The equation model can be declared
valid and consistent if used to estimate potato plants’
productivity by N-total land, BS, and BD in Bumiaji,
Batu.

CONCLUSIONS

The study identified that nutrient availability (soil
N-total), nutrient retention (base saturation, BS), and

soil density (bulk density, BD) are the key soil
parameters influencing potato productivity. Among
these, high bulk density negatively affects tuber
growth due to restricted root development.
Vegetation indices sensitive to these soil parameters
and potato yield include NGRDI for soil N-total, GLI
for BS, and GLI-CS for BD. The developed multiple
regression model, Potato Plant Productivity = 24.22
+ 7.26 (NGRDI) + 9.87 (GLI) + 28.42 (GLI-CS),
achieved a coefficient of determination (R?) of 0.51.
This indicates that the model can moderately explain
the variation in potato productivity. Statistical
validation using the t-test further confirmed that the
model is reliable and consistent for estimating potato
yield in Bumiaji District, Batu City, soil total N.
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