Choosing Different Contour Interval on a Fully Raster-Based Erosion Modeling: Case Study at Merawu Watershed, Banjarnegara, Central Java

Bambang Sulistyo

Abstract


The research was aimed to study the efect of choosing different contour interval to produce Digital Elevation Model on a fully raster-based erosion modeling of The Universal Soil Loss Equation using remote sensing data and a geographical information system technique.  Methods were applied by analyzing all factors that affecting erosion in GIS environment such data were in the form of raster. Those data were R , K, LS, C and P factors. LS factor was derived from Digital Elevation Model by taking flow direction from each pixel into consideration. Research used 3 contour intervals to produce Digital Elevation Model, i.e. 12.5, 25 and 50 meter. C factor was derived from the formula after applying linearly regression analysis between Normalized Difference Vegetation index of remote sensing data and C factor measured directly on the field. Another analysis was the creation of map of Bulk Density used to convert erosion unit as from Mg ha-1mo-1 to mm mo-1. To know the model accuracy,  validation of the model was done by applying statistical analysis and by comparing the result of erosion model (Emodel) with actual erosion (Eactual) which was measured regularly in Merawu watershed. A threshold value of > 0.80 or > 80% was chosen to justify whether the model was accurate or not. The results showed that all Emodel using 3 countour intervals have correlation value of > 0.8. These results were strenghtened with the result of analysis of variance which showing there were no difference between Emodel and Eactual. Among the 3 models, only Emodel using 50 meter countour interval reached the accuracy of 81.13% while the other only had 50.87% (using countour interval 25 meter) and 32.92% (using countour interval 12.5 meter).

Keywords


Erosion modeling; fully raster-based; GIS, Landsat 7 ETM+

Full Text:

PDF

References


Abdurachman A. 2008. Teknologi dan strategi konservasi Tanah dalam kerangka revitalisasi pertanian. Pengemb Inovasi Pert 1(2): 105-124 (in Indonesian).

Abdurachman A, A Barus and U Kurnia. 1985. Pengelolaan tanah dan tanaman untuk usaha konservasi tanah, Pemb Penel Tanah Pupuk 3: 7-12 (in Indonesian).

Arsyad S 2000 Konservasi Tanah dan Air. Penerbit IPB/IPB Press, Cetakan ke-3, Darmaga, Bogor (in Indonesian).

Asdak C. 2007. Hidrologi dan Pengelolaan Daerah Aliran Sungai. Gadjah Mada University Press, Yogyakarta (in Indonesian).

Chang KT. 2008. Introduction to Geographic Information Systems. McGraw-Hill International Edition, New York, USA.

Eweg HPA, R Van Lammeren, H Deurloo and Z Woldai. 1998. Analysing degradation and rehabilitation for sustainable land management in the Highlands of Ethiopia. Land Degrad Develop 9: 529-542.

Fistikoglu O and NB Harmancioglu. 2002. Integration of GIS with USLE in assessment of soil erosion. Water Res Manage 16: 447-467.

Hadmoko DS. 2007. Toward GIS-gased integrated landslide hazard assessment: A critical overview. Indon J Geogr 39 (1): 55-77.

Indonesian Ministry of Forestry. 2009. Peraturan Menteri Kehutanan RI Nomor: P. 32/Menhut-II/2009 tentang Tata Cara Penyusunan Rencana Teknik Rehabilitasi Hutan dan Lahan Daerah Aliran Sungai (RTkRHL-DAS), Jakarta (in Indonesian).

Karaburun A. 2010. Estimation of C factor for soil erosion modeling using NDVI in Buyukcekmece watershed. Ozean J Appl Sci 3(1): 77-85.

Kartodihardjo H. 2008. Pengelolaan Sumberdaya Alam dan Lingkungan Hidup. Seminar Lingkungan Hidup dan Sumberdaya Alam, Universitas Bengkulu, Bengkulu (in Indonesian).

Lillesand TM, RW Kiefer and J Chipman. 2004. Remote Sensing and Image Interpretation (5 ed.). John Wiley and Sons, New York.

Lin CY, WT Lin and WC Chou. 2002. Soil erosion prediction and sediment yield estimation: the Taiwan experience. Soil Till Res 68 (2): 143-152.

PT Indonesia Power. 2009. Laporan Penyelidikan Sedimentasi Waduk PLTA PB. Soedirman. Unit Bisnis Pembangkitan Mrica, Banjarnegara (in Indonesian).

Pusat Penelitian dan Pengembangan Sumberdaya Air Bandung. 2006. Data Curah Hujan kawasan DAS Merawu dan sekitarnya tahun 1995-2006. Bandung (in Indonesian).

Santoso MR. 2005. Aplikasi Teknik Interpretasi Citra Landsat TM dan SIG untuk Pemetaan Erosi Menggunakan Metode USLE pada DAS Oya DIY, [Thesis]. Gadjah Mada University, Yogyakarta (in Indonesian).

Siregar S. 2005. Statistik Terapan. Penerbit PT. Grasindo, Jakarta (in Indonesian).

Sulistyo B. 2011. Pengaruh erosivitas hujan yang diperoleh dari rumus yang berbeda terhadap pemodelan erosi berbasis raster (Studi Kasus Di DAS Merawu, Banjarnegara, Jawa Tengah). J Agritech 31 (3): 250-259.

Suriyaprasit M. 2008. Digital terrain analysis and image processing for assessing erosion prone areas. [Thesis]. International Institute for Geo-Information Science and Earth Observation (ITC), Enschede, The Netherlands.

Wainwright J and M Mulligan. 2002. Environmental Modelling, Finding Simplicity in Complexity, John Wiley & Sons, Ltd, London.

Wischmeier WH and DD Smith. 1978. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning, USDA Agriculture Handbook No. 37.




DOI: http://dx.doi.org/10.5400/jts.2011.v16i3.257-266

Refbacks

  • There are currently no refbacks.


INDEXING SITE

University of OxfordColumbia University LibraryStanford Crossref EBSCO

DOAJ


Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.