An Evaluation of MODIS Global Evapotranspiration Product as Satellite-Based Evapotranspiration Data for Supporting Precision Agriculture in West Papua - Indonesia

Arif Faisol, Indarto Indarto, Elida Novita, Budiyono Budiyono

Abstract


Precision Agriculture has been a significant issue since the middle of the 1980s. Evapotranspiration is one of the main parameters in precision agriculture to analyze real water needs in the agriculture area and managing water resources. Traditionally evapotranspiration estimates by directly measured methods, i.e., lysimeter, pan-evaporation, eddy covariance, Bowen ratio, soil water, and climate data analysis. These methods are expensive techniques with low spatial representativeness. The utilization of remote sensing technology is expected to be an alternative solution for providing evapotranspiration data with a cost-effective and high spatial representative. This research aims to evaluate the MODIS global evapotranspiration as satellite-based evapotranspiration in estimating evapotranspiration in West Papua. Four (4) statistical parameters, i.e., mean error (ME), root means square error (RMSE), relative bias (RB), and mean bias factor (MBF), are using for evaluation. The research showed that MODIS global evapotranspiration was overestimated in estimating evapotranspiration in West Papua. However, MODIS global evapotranspiration has an acceptable accuracy in estimating evapotranspiration in West Papua indicated by ME = 0.66 mm/day, RMSE = 0.94 mm/day, RB = 0.27, and MBF = 0.81. Therefore, MODIS global evapotranspiration can be used as an alternative solution for providing evapotranspiration data in West Papua with a cost-effective.

Keywords


Evapotranspiration; MODIS global evapotranspiration product; satellite-based evapotranspiration; precision agriculture

Full Text:

PDF

References


Aguilar AL, H Flores, G Crespo, MI Mar, I Campos and A Calera. 2018. Performance assessment of MOD16 in evapotranspiration evaluation in Northwestern Mexico. Water 10: 14p. https://doi.org/10.3390/w10070901

Allen RG, LS Pereira, D Raes and M Smith. 1998. Fao Irrigation and Drainage Paper No 56/ : Crop Evapotranspiration (1st ed.). FAO. 300p.

Bonemberger BdS, E Mercante, MAV Boas, SC Wrublack and LV Oldoni. 2018. Satellite-based ET estimation using landsat 8 Images and SEBAL model1. Rev Ciênc Agron 49: 221-227. https://doi.org/10.5935/1806-6690.20180025

Ceron CN, AM Melesse, R Price, SB Dessu and HP Kandel. 2015. Operational actual wetland evapotranspiration estimation for South Florida using MODIS imagery. Remote Sens 7: 3613-3632. https://doi.org/10.3390/rs70403613

Courault D, B Seguin and A Olioso. 2005. Review on estimation of evapotranspiration from remote sensing data: From empirical to numerical modeling approaches. Irrig Drain Syst 19: 223-249.

Faisol A, B Budiyono, I Indarto and E Novita. 2020. Comparison of Terra MODIS Surface Reflectance (TMSR) and Terra MODIS Global Evapotranspiration (TMGE) as Satellite Image-Based Evapotranspiration (ET) in East Java-Indonesia. Agrociencia J 54: 2020-2054.

Faisol A, I Indarto, E Novita and B Budiyono. 2020. An evaluation of modis global evapotranspiration product (MOD16A2) as terrestrial evapotranspiration study in Manokwari-West Papua-Indonesia. ARPN J Eng Appl Sci 15: 510-513.

Guzinski R and H Nieto. 2019. Evaluating the feasibility of using Sentinel-2 and Sentinel-3 satellites for high-resolution evapotranspiration estimations. Remote Sens Environ 221: 157-172. https://doi.org/10.1016/j.rse.2018.11.019

Jiang L, S Islam and TN Carlson. 2004. Uncertainties in latent heat flux Measurement and estimation/ : implications for using a simplified approach with remote sensing data. Can J Remote Sens 30: 769-787. https://doi.org/10.5589/m04-038

Junior PF, AM Sousa, MI Vitorino, EB De Souza and PJOP De Souza. 2013. Estimativa de evapotranspiração, no leste da Amazônia utilizando SEBAL. Amazonian J Agr Env Sci 56: 33-39.

Kalma JD, TR McVicar and MF McCabe. 2008. Estimating land surface evaporation/ : A review of methods using remotely sensed surface temperature data. Surv Geophys 29: 421-469. https://doi.org/10.1007/s10712-008-9037-z

Kim HW, K Hwang, Q Mu, SO Lee and M Choi. 2012. Validation of MODIS 16 global terrestrial evapotranspiration products in various climates and land cover types in Asia. KSCE J Civ Eng 16: 229-238. https://doi.org/10.1007/s12205-012-0006-1

Li Y, C Huang, J Hou, J Gu, G Zhu and X Li. 2017. Mapping daily evapotranspiration based on spatiotemporal fusion of ASTER and MODIS images over irrigated agricultural areas in the Heihe River Basin, Northwest China. Agric For Meteorol 244-245: 82-97. https://doi.org/10.1016/j.agrformet.2017.05.023

Miranda RDQ, JD Galvíncio, MSB de Moura, CA Jones and R Srinivasan. 2017. Reliability of MODIS evapotranspiration products for heterogeneous dry forest/ : A study case of caatinga. Adv Meteorol 2017: 14p. https://doi.org/10.1155/2017/9314801

Mu Q, M Zhao and SW Running. 2011. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens Environ 115: 1781-1800. https://doi.org/10.1016/j.rse.2011.02.019

Mu Q, M Zhao and SW Running. 2013. MODIS global terrestrial evapotranspiration (ET) product (NASA MOD16A2/A3): Algorithm Theoretical Basic Document. NASA. 66p.

Nouri H, M Faramarzi, B Sobhani and SH Sadeghi. 2017. Estimation of evapotranspiration based on surface energy balance algorithm for land (SEBAL) using Landsat 8 and MODIS images. Appl Ecol Env Res 15: 1971-1982.

Omranian E, HO Sharif and AA Tavakoly. 2018. How well can global precipitation measurement (GPM) capture hurricanes? case study/ : hurricane harvey. Remote Sens: 14p. https://doi.org/10.3390/rs10071150

Pierce FJ and P Nowak. 1999. Aspect of precision agriculture. Adv Agron 67: 1-85. https://doi.org/https://doi.org/10.1016/S0065-2113(08)60513-1

Shekar NCS and L Nandagiri. 2016. Actual Evapotranspiration Estimation Using a Penman-Monteith Model. Int J Adv Agr Environ Engg. 3: 161-164.

Thenkabail P. 2016. Remote Sensing Handbook/ : Land resources monitoring, modeling, and mapping with remote sensing: Vol. II (1st ed.). CRC Press. London. 849p.

WMO [World Meteorological Organization]. 2008. Guide to Hydrological Practices. Volume I: Hydrology–From Measurement to Hydrological Information. In Journal of the Nepal Medical Association: Vol. I (6th ed., Issue 168). World Meteorological Organization. https://doi.org/10.1080/02626667.2011.546602

Zhang Q. 2016. Precision Agriculture Technology for Crop Farming (1st ed.). CRC Press. London. 368p.




DOI: http://dx.doi.org/10.5400/jts.2021.v26i1.43-49

Refbacks

  • There are currently no refbacks.


INDEXING SITE

University of OxfordColumbia University LibraryStanford Crossref EBSCO

DOAJ

 

  


Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.