The Phytoextraction of Copper from Tropical Soil 21 Years after Amendment with Heavy-Metal Containing Waste

Gianluigi Silva, Septi Nurul Aini, Henrie Buchari, Abdul Kadir Salam

Abstract


Several particular plants are suggested to extract significant parts of heavy metals from soils and accumulate them in their roots and shoots.  This research aimed to study the phytoextraction of Cu by several plants from heavy-metal contaminated tropical soils.  Soil samples collected from plots treated in 1998 with 0, 15 and 60 Mg industrial waste ha-1 were planted with three different plants, i.e., caisim, water spinach, and lettuce.   Plant parts (roots and shoots) and soil samples were harvested after a four-week growth period and analyzed for plant and soil Cu.  The results show that the growth of plants was depressed by the increase in the soil Cu (extracted by 1 N HNO3) as affected by waste levels, with water spinach being the most progressive and produced the most significant biomass.  The absorption of Cu by caisim and water spinach increased with the soil extracted Cu (linear R2 = 0.71* for caisim and 0.32* for water spinach) and accumulated greater in plant roots than that in shoots. The translocation factor (TF << 1.00) indicates that all plants were good Cu phytostabilizators rather than phytoextractors, with water spinach being the best Cu extractor.


Keywords


Copper; heavy metals; phytoextraction; phytoremediation; phytostabilization; pollution; translocation factor

Full Text:

PDF

References


Atafar Z, A Mesdaghinia, J Nouri, M Homage, M Yunesian, M Ahmadimoghaddam and AH Mahvi. 2010. Effect of fertilizer application on soil heavy metal concentration. Environ Mon Assess 160:83-89. https://doi.org/10.1007/s10661-008-0659-x

Bhargava A, FF Carmona, M Bhargava and S Srivastava. 2012. Approaches for enhanced phytoextraction of heavy metals. J Environ Manage 105:103-120. https://doi.org/10.1016/j.jenvman.2012.04.002

Chen Y and H Ahsan. 2004. Cancer burden from arsenic in drinking water in Bangladesh. Am J Public Health 94: 741-744. https://doi.org/10.2105/AJPH.94.5.741

Dahlan EN. 2004. Membangun Kota Kebun (Garden City) Bernuansa Hutan Kota.IPB Press. Bogor. (in Indonesian).

Gerhardt KE, PD Gerwing and BM Greenberg. 2017. Opinion: Taking phytoremediation from proven technology to accepted practice. Plant Sci 256:170-185. https://doi.org/10.1016/j.plantsci.2016.11.016

Gerth A. 2000. Phytoremediation of soil and sludge with special examination of heavy metal contamination. In: DL Wis (ed). Bioremediation of contaminated soils. Marcel Dekker, New York, pp. 787-809.

Haryanti S, RB Hastuti, ED Hastuti and Y Nurchayanti. 2011. Adaptasi morfologi fisiologi dan anatomi eceng gondok (Eichhornia crassipes (Mart) Solm) di berbagai perairan tercemar. Bull Anatomi Fis 14: 39-46. (in Indonesian). doi: https://doi.org/10.14710/baf.v14i2.2576

Huang D, L Liu, G Zeng, P Xu, C Huang, L Deng, R Wang and J Wan. 2017. The effects of rice straw biochar on indigenous microbial community and enzyme activity in heavy metal-contaminated sediment. Chemosphere 174: 545-553. doi: https://doi.org/10.1016/j.chemosphere.2017.01.130

Hidayatullah A. 2020. Ketersediaan dan Serapan Cu dan Zn Rumput Gajah (Penissetum purpureum) pada Tanah 21 Tahun Setelah Tercemar Logam Berat dan Dikapur [skripsi]. Universitas Lampung. Bandar Lampung. (in Indonesian).

Ishii Y, K Hamano, D Kang, S Idota and A Nishiwaki. 2015. Cadmium phytoremediation potential of napiergrass cultivated in Kyushu, Japan. Appl Environ Soil Sci ID 756270. https://doi.org/10.1155/2015/756270

Kambhampati MS and L Williams. 2001. Phytoremediation of lead-contaminated soils using Mirabilis jalapa. Phytoremed Wetlands Sed, 145–150. https://doi.org/10.102/es9604828.

Khan AG, C Kuek, TM Chaudhry, CS Khoo and WJ Hayes. 2000. Role of plants, mycorrhizae, and phytochelatins in heavy metal contaminated land remediation. Chemosphere 41: 197-207. https://doi.org/10.1016/S0045-6535(99)00412-9

Lewenussa A. 2009. Pengaruh mikoriza dan bioorganik terhadap pertumbuhan bibitCananga odorata (Lamk) Hook. Fet & Thoms [skripsi]. IPB Bogor. (in Indonesian).

Mallmann, JFK, S Rheinheimer, C Alberto, C Cella, J Paolo and V Filipovi. 2014. Soil tillage reduces surface metal contamination – model development and simulations of zinc and copper concentration profiles in a pig slurry-amended soil. Agric Ecosyst Environ 196: 59-68. https://doi.org/10.1016/j.agee.2014.06.024

Matthews-Amune OC and S Kakulu. 2012. Determination of heavy metals in forage grasses (Carpet Grass (Axonopus Ompressus), Guinea Grass (Panicum maximum), and Elephant Grass (Pennisetum Purpureum)) in the vicinity of Itakpe Iron Ore Mine, Nigeria, 13: 16-25.

Moenir M. 2010. Kajian fitoremidiasi sebagai alternatif pemulihan tanah tercemar logam berat. J Ris Teknol Pencegahan Pencemaran Industri 1: 115-123. (in Indonesian).

Mukhopadhyay S and SK Maiti. 2010. Phytoremediation of metal mine waste. Applied Eco Environ Res 8: 207-222.

Nascimento SS, EB Silva, LRF Alleoni, FG Fonseca and BO Nardis. 2014. Availability and accumulation of lead for forage grasses in contaminated soil. J Soil Sci Plant Nutr 14: 783-802. doi: https://doi.org/10.4067/s0718-95162014005000063

Ng CC, MM Rahman, AN Boyce and R Abas. 2016. Heavy metals phyto-assessment is commonly grown vegetables: water spinach (I. Aquatica) and okra (A. esculentus). Springer Plus 5. doi: https://doi.org/10.1186/s40064-016-2125-5

Pinho S and B Ladeiro. 2012. Phytotoxicity by lead as heavy metal focuses on oxidative stress. J Botany ID369572. doi: https://doi.org/10.1155/2012/369572

Priyanto B and J Prayitno. 2006. Fitoremediasi sebagai Sebuah Teknologi Pemulihan. BPPT. (in Indonesian).

Ranjan V, P Sen, D Kumar and A Sarsawat. 2015. A review on dump slope stabilization by revegetation with reference to indigenous plant. Ecol Process 4. doi: https://doi.org/10.1186/s13717-015-0041-1

Salam AK. 2017. Management of Heavy Metals in Tropical Soil Environment. Global Madani Press. Bandar Lampung.

Salam AK and K Ginanjar. 2018. Tropical soil labile fractions of copper in the experimental plots ±ten years after application of copper-containing-waste. J Trop Soils 23: 11-18. https://doi.org/10.5400/jts.2018.v23i1.11-18.

Samudro G and S Mangkoedihardjo. 2010. Review on BOD, COD, and BOD/COD ratio: a triangle zone for toxic, biodegradable, and stable levels. Int J Ac Res 2: 235-239.

Silva G. 2020. Fitoekstraksi Cu dan Zn dari Tanah Tercemar Logam Berat oleh Beberapa Tanaman [skripsi]. Universitas Lampung. Bandar Lampung. (in Indonesian).

Sarwar N, M Imran, M, MR Shaheen, W Ishaque, MA Kamran, A Matloob, A Rehim and S Hussain. 2017. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere 171: 710-721. https://doi.org/10.1016/j.chemosphere.2016.12.116

Siswanto D. 2009. Respon Pertumbuhan Kayu Apu (Pistia stratiotes L.) Jagung (Zea mays L.) dan Kacang Tolo (Vigna sinensis L.) terhadap pencemaran Timbal (Pb). Universitas Brawijaya. Malang.

Wibisono HS. 2009. Pemanfaatan mychorizal helper bacteria (MHBS) dan fungsi mikoriza arbuskula (FMA) untuk meningkatkan pertumbuhan semai gmelina (Gmelina arborea Roxb) [Skripsi]. Institut Pertanian Bogor. Bogor. (in Indonesian).




DOI: http://dx.doi.org/10.5400/jts.2021.v26i1.11-18

Refbacks

  • There are currently no refbacks.


INDEXING SITE

University of OxfordColumbia University LibraryStanford Crossref EBSCO

DOAJ


Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.