Water Table Control Model for Maize Cultivation of C Typology Land on Tidal Lowland Reclaimed Area of South Sumatra, Indonesia

Momon Sodik Imanudin, Abdul Madjid, Bakri Bakri, Mustika Edi Armanto, Satria Jaya Priatna, Warsito Warsito, Edwin Mardiansa

Abstract


Tidal lowland productivity in type C is still low. Most of them have only been able to cultivate rice twice a year. The third cultivation of corn often fails due to a lack of water. The research objective is to determine an operational model for water management in the field for maize cultivation at several planting times. Model area is conducted at a tertiary block of reclaimed tidal lowland, Telang Jaya Village Primer 8 Delta Telang I, of  Banyuasin District. There are three planting times treatments: the fourth week of April, the second week of June, and the first week of July, 2021. A water management model was applied to control the drainage system, in which the water level in the tertiary channel is maintained at a depth of 50 cm. When groundwater drops below 70 cm, and there is no rain, pump irrigation is provided. Results of the field experiment showed that the maize crop showed similar growth quality at each phase. Land with a planting period of June and July still requires water addition using pump irrigation. It was applied on 14th and 18th August. Moreover, the maize cultivated at the end of April did not require pump irrigation. All treatments have generally similar production with an average magnitude of 8.0 Mg ha-1. The highest production is 8.73 Mg ha-1, which is planted in the first week of July.

Keywords


Water table; drainage control; maize; tidal lowland

Full Text:

PDF

References


Abagyeh, S. O.I., Idoga, S., & Agber, P.I. (2016). Land suitability evaluation for maize (Zea mays) production in selected sites of the Mid-Benue valley, Nigeria. International Journal of Agriculture Policy Res., 4 (3), 46-51.

Abdillah, M. H., & Widiyastuti, D. A. (2022). Peningkatan Kualitas Kimia Tanah Sulfat Masam dengan Aplikasi Kombinasi Bahan Organik Lokal dan Limbah Agroindustri. Jurnal Ilmu Pertanian Indonesia, 27(1), 120–131. doi: https://doi.org/10.18343/jipi.27.1.120.

Aristya, V. E., & Samijan, S. (2022). The Yield Gap Maize under Intensive Cropping System in Central Java. PLANTA TROPIKA: Jurnal Agrosains (Journal of Agro Science), 10(1), 1–12. doi: https://doi.org/10.18196/pt.v10i1.8789.

Bakri, Imanudin, M. S., & Masreah Bernas, S. (2015). Water retention option of drainage system for dry season corn cultivation at tidal lowland area. Agrivita, 37(3), 237– 246. https://doi.org/10.17503/Agrivita-2015-37-3- p237-246.

Budianta. D., Alfredo, J., Bessy, P.B & Hermawan. A. 2021. Growth and Yield of Rice Planted in a Tidal Soil Under NPK in situ and Cow Manure Application. Journal of Tropical Soils, 26(2): 51–62. DOI: 10.5400/jts.2021.v26i2.51

Craft, K. J., Helmers, M. J., Malone, R. W., Pederson, C. H., & Schott, L. R. (2018). Effects Of Subsurface Drainage Systems On Water And Nitrogen Footprints Simulated With RZWQM2. American Society of Agricultural and Biological Engineers, 61(1), 245–261.

Crézé, C. M., & Madramootoo, C. A. (2019). Water table management and fertilizer application impacts on CO 2 , N 2 O and CH 4 fluxes in a corn agro-ecosystem. Scientific Reports, 9(1), 1–13. doi: https://doi.org/10.1038/s41598-019-39046-z.

Darma, S., Ramayana, S., & Supriyanto, B. (2021). Comparison of Content and Status of the C-Organic, Nitrogen, C/N Ratio, Soil pH, and Organic Matter in Rainfed, Tidal and Swampy Rice Fields (Case Study in Three Villages, in East Kalimantan. Proceedings of the International Conference for Tropical Studies and Its Applications, 4(3), 111–118. https://repository.unmul.ac.id/handle/123456789/7420.

Dojamo, T. S., Markos Takiso, S., & Lema Tessema, M. (2022). Evaluation of Maize (Zea mays L.) Varieties in Selected Lowland Areas of Southern Ethiopia. International Journal of Agronomy, 2022. doi: https://doi.org/10.1155/2022/9690792

Fang, J., & Su, Y. (2019). Effects of Soils and Irrigation Volume on Maize Yield, Irrigation Water Productivity, and Nitrogen Uptake. Scientific Reports, 9(1), 1–11. doi: https://doi.org/10.1038/s41598-019-41447-z.

Fransen, S. (2019). Impact of Controlled Drainage on Reaction Factor and Corn Yield. A Thesis submitted to the Faculty of Graduate Studies of The University of Manitoba. Department of Biosystems Engineering, University of Manitoba, Winnipeg, Canada.

Herawati, H., Chatib, N., Suswati, D., & Soetarto, Y. M. (2021). Physical Potentials and Constraints of Tidal Peat Swamps for Agriculture (Case Study of Rasau Jaya District, West Kalimantan Province, Indonesia). IOP Conference Series: Earth and Environmental Science, 921(1). doi: https://doi.org/10.1088/1755- 1315/921/1/012079.

Imanudin, M. S., Bakri, B., Armanto, M. E., & Rohim, A. M. (2021). Drainmod Model Adaptation for Developing Recommendations Water Management in the Tertiary Block of Tidal Lowland Agriculture. Journal of Tropical Soils, 26(3), 129. https://doi.org/10.5400/jts.2021.v26i3.129-140.

Imanudin, M. S., Madjid, A., Abi Sahil, M., & Agus, H. (2023). Perbaikan Kualitas Lahan pada Berbagai Kelas Hidrotopografi di Lahan Rawa Pasang Surut Delta Salek Banyuasin, Sumatera Selatan. Jurnal Agrikultura, 34(3), 445–455.

Imanudin, M. S., Madjid, A., Armanto, E., & Miftahul. (2020). Kajian Faktor Pembatas dan Rekomendasi Perbaikan Lahan untuk Budidaya Jagung di Lahan Rawa Pasang Surut Tipologi C. Jurnal Ilmu Tanah Dan Lingkungan, 22(2), 46–55. https://doi.org/10.29244/jitl.22.2.46-55.

Imanudin, M. S., Priatna, S. J., Armanto, M. E., & Prayitno, M. B. (2021). Integrated Duflow-Drainmod model for planning of water management operation in tidal lowland reclamation areas. IOP Conference Series: Earth and Environmental Science, 871(1). https://doi.org/10.1088/1755-1315/871/1/012035.

Kadioglu, H., Hatterman-valenti, H., Jia, X., Chu, X., & Aslan, H. (2019). Groundwater Table E ff ects on the Yield , Growth ,. Water, 11, 1–12.

Kalita, P. K., & Kanwar, R. S. (1992). Shallow Water Table Effects on Photosynthesis and Corn Yield. American Society of Agricultural and Biological Engineers, 35(1), 97–104.

Kanwar, R. S., Baker, J. L., & Mukhtar, S. (1988). Excessive Soil Water Effects At Various Stages of Development on the Growth and Yield of Corn. Transactions of the American Society of Agricultural Engineers, 31(1), 133– 141. https://doi.org/10.13031/2013.30678.

Kementan. (2021). Tanam Jagung, Petani Jember Raup Untung Di Akhir Tahun. Kementerian Pertanian Republik Indonesia.

Odili, F. E. (2021). Impact of Groundwater Table on Yield, Water Use, Root Distribution, and Seed Quality of Hard Red Spring Wheat (Triticum Aestivum L.). In North Dakota State University. doi: https://doi.org/10.4324/9781315721606-101.

Paiao, G. D., Fernández, F. G., & Naeve, S. L. (2021). Drainage conditions influence corn-nitrogen management in the US upper midwest. Agronomy, 11(12). https://doi.org/10.3390/agronomy11122491.

Prasetyo, D., Imaria, D., Niswati, A., & Yusnaini, S. (2021). Effect of the 32nd-year Soil Tillage and Nitrogen Fertilization on the Population and Biomass of Earthworm under Zea mays L. Journal of Tropical Soils, 26(2), 105. https://doi.org/10.5400/jts.2021.v26i2.105- 113.

Sirappa, M. P., Muhtar, M., Heryanto, R., Indrayana, K., & Husnah, N. (2021). Assessment of Three IAARD Maize Productivity In Tobadak District, Central Mamuju, Indonesia. Journal of Tropical Soils, 26(3), 121. https://doi.org/10.5400/jts.2021.v26i3.121-128.

Taisa, R., Maulida, D., Salam, A. K., Kamal, M., & Niswati, A. (2019). Improvement of Soil Chemical Properties and Growth of Maize due to Biochar Application on Ultisol. Journal of Tropical Soils, 24(3), 101. doi: https://doi.org/10.5400/jts.2019.v24i3.101-107.

Youssef, M. A., Strock, J., Bagheri, E., Reinhart, B. D., Abendroth, L. J., Chighladze, G., Ghane, E., Shedekar, V., Norman, N. R., Frankenberger, J. R., Helmers, M. J., Dan, D. B., Kladivko, E., Negm, L., Nelson, K., & Pease, L. (2023). Impact of controlled drainage on corn yield under varying precipitation patterns: A synthesis of studies across the U.S. Midwest and Southeast. Agricultural Water Management, 275(November 2022), 107993. doi: https://doi.org/10.1016/j.agwat.2022.107993.

Yustisia, Y., Ratmini, N. S., Amirrullah, J., Juwita, Y., Hutabarat, Y., & Atekan, A. (2021). Yield Components and Efficiency Index of Maize Yield: Relationship to Yields in Tidal Fields. Jurnal Lahan Suboptimal : Journal of Suboptimal Lands, 10(2), 140–149. doi: https://doi.org/10.36706/jlso.10.2.2021.522.

Zhou, X., Madramootoo, C. A., MacKenzie, A. F., Kaluli, J. W., & Smith, D. L. (2000). Corn yield and fertilizer N recovery in water-table-controlled corn-rye-grass systems. European Journal of Agronomy, 12(2), 83–92. doi: https://doi.org/10.1016/S1161-0301(99)00048-9.




DOI: http://dx.doi.org/10.5400/jts.2025.v30i2.113-124

Refbacks

  • There are currently no refbacks.


INDEXING SITE

University of OxfordColumbia University LibraryStanford Crossref EBSCO

DOAJ


Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.