The Isothermal Phosphate Adsorption in a New Tidal Rice Field of Barito Kuala Regency South Kalimantan: A Study on Phosphorus Adsorption in Acid Sulfate Soils for Agricultural Improvement

Fadly Hairannoor Yusran, Zuraida Titin Mariana, Windi Bunga Devita

Abstract


High P adsorption reduces rice production, especially in newly reclaimed paddy fields. The research studied soil P adsorption using the adsorption isoterm equation and soil P solubility in a New Tidal Rice Field of Barito Kuala Regency. This incubation study used soil samples from Ray 7, Balandean Village, Alalak District, Barito Kuala Regency, South Kalimantan Province, from May to November 2022. The isothermal adsorption of P was measured in six soil samples with three replicates. P (0, 2, 5, 10, 15, 30, and 50 mg P kg-1) from KH2PO4 were added in 1 g soil in 25 mL 0.01 M CaCl2. The suspensions were shaken at 25 ! for 17 hours, then centrifuged at 3000 rpm for five minutes, and the supernatant was filtered (Whatman 42) for P analysis. Three ordinary adsorption isotherm equations, Langmuir, Freundlich, and Brunauer-Emmett-Teller (BET), were used to fit the data. After adding 50 mg P kg-1, the average dissolved-P was 34.60 mg kg-1 (69%), and adsorbed-P was 15.40 mg kg-1 (31%). The BET equation was more suitable for describing P adsorption isotherm in this type of soil, which has the ability to adsorb one-third of any P addition.

Keywords


Adsorption isotherm; P solubility; acid sulfate soil; C; Al; Fe metals

Full Text:

PDF

References


Alia Farhana, J., Shamshuddin, J., Fauziah, C. I., Husni, M. H. A., & Panhwar, Q. A. (2017). Enhancing the fertility of an acid sulfate soil for rice cultivation using lime in combination with bio-organic fertilizer. Pakistan Journal of Botany, 5(49), 1867–1875.

Allen, D. G., Barrow, N. J., & Bolland, M. D. A. (2001). Comparing simple methods for measuring phosphate sorption by soils. Australian Journal of Soil Research, 39(6). https://doi.org/10.1071/SR00078

Alwi, M., Sabiham, S., & Anwar, S. (2010). Pelindian tanah balandean Kalimantan Selatan pada beberapa kondisi potensial redok menggunakan sumber air insitu. Jurnal Tanah Dan Iklim, 32, 83–94.

Ar-riza, I., & Alwi, M. (2015). Peningkatan Hasil Padi di Tanah Sulfat Masam melalui Kombinasi Perlakuan Lindi dan Olah Tanah. Jurnal Agronomi Indonesia, 43(2), 105–110.

Asnandi, M., Yusran, F. H., & Syarbini, M. (2023). Jerapan Isotermal Fosfat pada Tanah Ultisol. Acta Solum, 1(2), 85–89.

Azman, E. A., Jusop, S., & Ishak, C. F. (2014). Increasing Rice Production Using Different Lime Sources on an Acid Sulphate Soil in Merbok, Malaysia. Pertanika Journal of Tropical Agricultural Science, 37(2), 223–247.

Bai, X., Lin, J., Zhang, Z., Liu, B., Zhan, Y., & Hu, D. (2021). Interception of sedimentary phosphorus release by iron-modified calcite capping. Journal of Soils and Sediments, 21(1). https://doi.org/10.1007/s11368-020-02754-5

Balai Penelitian Tanah. (2005). Petunjuk Teknis Analisis Kimia Tanah, Tanaman, Air, dan Pupuk (B. Prasetyo, D. Santoso, & L. Widowati, Eds.). Balai Penelitian Tanah.

Barrow, N. J., & Debnath, A. (2014). Effect of phosphate status on the sorption and desorption properties of some soils of northern India. Plant and Soil, 378(1–2). https://doi.org/10.1007/s11104-014-2042-8.

Bhakari, H., Fauzi, F., & Hanum, H. (2013). Pengaruh pemberian kompos jerami dan pupuk SP-36 pada tanah sulfat masam potensial terhadap perubahan sifat kimia serta pertumbuhan dan produksi padi (Oriza sativa L.). Jurnal Agroekoteknologi Universitas Sumatera Utara, 2(1), 172–185. https://doi.org/10.32734/jaet.v2i1.5751

Chacon, N., Silver, W. L., Dubinsky, E. A., & Cusack, D. F. (2006). Iron reduction and soil phosphorus solubilization in humid tropical forests soils: The roles of labile carbon pools and an electron shuttle compound. Biogeochemistry, 78(1). https://doi.org/10.1007/s10533-005-2343-3

Dierolf, T., Fairhust, T., & Mutert, E. (2001). Soil Fertility Kit: A Toolkit for Acid, Upland Soil Fertility Management in Southeast Asia. Handbook series. Potash and Phosphate Institute of Canada, Georgia.

Ding, Z., Ren, B., Chen, Y., Yang, Q., & Zhang, M. (2023). Chemical and Biological Response of Four Soil Types to Lime Application: An Incubation Study. Agronomy, 13(2). https://doi.org/10.3390/agronomy13020504

Dossa, E. L., Baham, J., Khouma, M., Sene, M., Kizito, F., & Dick, R. P. (2008). Phosphorus sorption and desorption in semiarid soils of Senegal amended with native shrub residues. Soil Science, 173(10). https://doi.org/10.1097/SS.0b013e3181893999

Erich, M. S., Fitzgerald, C. B., & Porter, G. A. (2002). The effect of organic amendments on phosphorus chemistry in a potato cropping system. Agriculture, Ecosystems and Environment, 88(1). https://doi.org/10.1016/S0167-8809(01)00147-5

Essington, M. E. (2015). Soil and Water Chemistry: An Integrative Approach. In Outlook on Agriculture (Second, Issue 6). CRC Press.

Firnia, D. (2018). Dinamika Unsur Fosfor pada Tiap Horizon Profil Tanah Masam. Jurnal Agroekoteknologi, 10(1). https://doi.org/10.33512/j.agrtek.v10i1.5464

Fitzpatrick, R., Grealish, G., Shand, P., Marvanek, S., Thomas, B., Creeper, N., Merry, R., & Raven, M. (2008). Information paper on risk assessment of acid sulfate soil materials in Currency Creek, Finniss River, Tookayerta Creek, and Black Swamp Region, South Australia. CSIRO, January, 1–13.

Fox, R. L., & Kamprath, E. J. (1970). Phosphate Sorption Isotherms for Evaluating the Phosphate Requirements of Soils. Soil Science Society of America Journal, 34(6). https://doi.org/10.2136/sssaj1970.03615995003400060025x

Gichangi, E. M., Mnkeni, P. N. S., & Muchaonyerwa, P. (2008). Phosphate sorption characteristics and external P requirements of selected South African Soils. Journal of Agriculture and Rural Development in the Tropics and Subtropics, 109(2), 139–149.

Giles, C. H., Smith, D., & Huitson, A. (1974). A general treatment and classification of the solute adsorption isotherm. I: Theoretical. Journal of Colloid And Interface Science, 47(3). https://doi.org/10.1016/0021-9797(74)90252-5

Hinz, C. (2001). Description of sorption data with isotherm equations. Geoderma, 99(3–4). https://doi.org/10.1016/S0016-7061(00)00071-9

Holford, I. C. R. (1997). Soil phosphorus: Its measurement and its uptake by plants. Australian Journal of Soil Research, 35(2). https://doi.org/10.1071/S96047

Iyamuremye, F., Dick, R. P., & Baham, J. (1996). Organic amendments and phosphorus dynamics: II. distribution of soil phosphorus fractions. Soil Science, 161(7). https://doi.org/10.1097/00010694-199607000-00003

Kinniburgh, D. G. (1986). General Purpose Adsorption Isotherms. Environmental Science and Technology, 20(9). https://doi.org/10.1021/es00151a008

Kirkby, E. A., & Johnston, A. E. (2008). Soil and fertilizer phosphorus in relation to crop nutrition. https://doi.org/10.1007/978-1-4020-8435-5_9

Koesrini, William, E., & Nursyamsi, D. (2015). Application of Lime and Adaptable Variety to Increase Tomato Productivity at Potential Acid Sulphate Soil. Journal of Tropical Soils, 19(2), 59–66. https://doi.org/10.5400/jts.2014.v19i2.59-66

Kselik, R. A. L., Smilde, K. W., Ritzema, H. P., Subagyono, K., Saragih, S., Damanik, M., & Suwardjo, H. (1992). Integrated research on water management, soil fertility, and cropping systems on Acid Sulfate Soils in South Kalimantan, Indonesia. In D. L. Dent & M. E. van Mensvoort (Eds.), Selected Papers of the Ho Chi Minh City Symposium on Acid Sulphate Soils (Issue March, pp. 177–194). ILRI Publication 53.

Lei, J., Lin, J., Zhan, Y., Zhang, Z., & Ma, J. (2021). Effectiveness and mechanism of aluminum/iron co-modified calcite capping and amendment for controlling phosphorus release from sediments. Journal of Environmental Management, 298. https://doi.org/10.1016/j.jenvman.2021.113471

Liu, D., Huang, Z., Men, S., Huang, Z., Wang, C., & Huang, Z. (2019). Nitrogen and phosphorus adsorption in aqueous solutions by humic acids from weathered coal: Isotherm, kinetics, and thermodynamic analysis. Water Science and Technology, 79(11). https://doi.org/10.2166/wst.2019.218

Liu, J. Z., Z. S. Li, & J. Y. Li. (1994). Utilization of plant potentialities to enhance the bio-efficiency of phosphorus in soil. Ecoagriculture Research, 2, 16–23.

Marschner, P. (2011). Marschner’s Mineral Nutrition of Higher Plants: Third Edition. In Marschner’s Mineral Nutrition of Higher Plants: Third Edition. https://doi.org/10.1016/C2009-0-63043-9

Masulili, A. (2015). Pengelolaan lahan sulfat masam untuk pengembangan pertanian. Jurnal Agrosans, 12, 1–13.

McGechan, M. B., & Lewis, D. R. (2002). Sorption of phosphorus by soil, part 1: Principles, equations, and models. In Biosystems Engineering (Vol. 82, Issue 1). https://doi.org/10.1006/bioe.2002.0054

Michael, P. S. (2013). Ecological Impacts and Management of Acid Sulphate Soil: A Review. Journal Asian: Water, Environment and Pollution, 10(4), 13–24.

Morel, C., Tiessen, H., & Stewart, J. W. B. (1996). Correction for P-sorption in the measurement of soil microbial biomass P by CHCl3 fumigation. Soil Biology and Biochemistry, 28(12), 1699–1706. https://doi.org/10.1016/S0038-0717(96)00245-3

Mulyani, A., & Sarwani, M. (2013). Karakteristik dan Potensi Lahan Sub Optimal untuk Pengembangan Pertanian di Indonesia. Jurnal Sumber Daya Lahan, 7(1), 47–55.

Noor, M. (2004). Lahan Rawa: Sifat dan Pengelolaan Tanah Bermasalah Sulfat Masam. PT Raja Grafindo Persada. Jakarta. Jakarta: Divisi Buku Perguruan Tinggi.

Oliveira, R. De, Silva, L. S., Souza, N. F. de, Pietroski, M., Caione, G., Júnior, G. de F. S., Ferbonink, G. F., Gomes, R. P., Júnior, J. M., Santos, G. A. de A., & Campos, M. C. C. (2018). Mineralogy and Maximum Phosphorus Adsorption Capacity in Soybean Development. Journal of Agricultural Science, 10(7), 1916–9760. https://doi.org/10.5539/jas.v10n7p242

Oyebanjo, O., Ekosse, G. I., & Odiyo, J. (2022). Phosphorus Sorption in Soils and Clay Fractions Developed from Different Parent Rocks in Limpopo Province, South Africa. Sustainability, 14(14), 8528. https://doi.org/10.3390/su14148528

Pant, H. K., & Reddy, K. R. (2001). Phosphorus Sorption Characteristics of Estuarine Sediments under Different Redox Conditions. Journal of Environmental Quality, 30(4), 1474–1480. https://doi.org/10.2134/jeq2001.3041474x

Quiroga, M. J., Olego, M. Á., Sánchez-García, M., Medina, J. E., Visconti, F., Coque, J. J. R., & Jimeno, J. E. G. (2017). Effects of liming on soil properties, leaf tissue cation composition and grape yield in a moderately acid vineyard soil. Influence on must and wine quality. Oeno One, 51(4), 342–362. https://doi.org/10.20870/oeno-one.2017.51.4.2039

Rahman, M. A., Lamb, D., Kunhikrishnan, A., & Rahman, M. M. (2021). Kinetics, isotherms, and adsorption–Desorption behavior of phosphorus from aqueous solution using zirconium–iron and iron-modified biosolid biochars. Water (Switzerland), 13(23). https://doi.org/10.3390/w13233320

Rayment, G. E., & Higginson, F. R. (1992). Australian Laboratory Handbook of Soil and Water Chemical Methods. In Australian Soil and Land Survey Handbook. Inkata Press, Melbourne.

Sarwani, M., Shamshuddin, J., Husni, M., & Ishak, C. (2003). Alleviation of Aluminum Toxicity in an Acid Sulfate Soil in Malaysia Using Organic Materials. Communications in Soil Science and Plant Analysis, 34, 2993–3011. https://doi.org/10.1081/CSS-120025221

Shamshuddin, J., Azman, E. A., Shazana, R. S., & Ishak, C. (2013). Rice defense mechanisms against the presence of excess amounts of Al3+ and Fe2+ in the water. Australian Journal of Crop Science, 7, 314–320.

Shazana, M. A. R., Shamshuddin, J., Fauziah, C. I., Panhwar, Q. A., & Naher, U. A. (2014). Effects of applying ground basalt with or without organic fertilizer on the soil fertility of acid sulfate soil and rice growth. Malaysian Journal of Soil Science, 18, 87–102.

Sparks, D. L. (2003). Environmental Soil Chemistry: Second Edition. In Environmental Soil Chemistry: Second Edition. https://doi.org/10.1016/B978-0-12-656446-4.X5000-2

Susilawati, A., & Fahmi, A. (2013). Dinamika Besi pada Tanah Sulfat Masam yang Ditanami Padi. Jurnal Sumberdaya Lahan, 7(2), 67–75.

Wilson, B. (2005). Elevations of sulfurous layers in acid sulfate soils: What do they indicate about sea levels during the Holocene in Eastern Australia? Catena, 62, 45–56. https://doi.org/10.1016/j.catena.2005.02.002

Yusran, F. H. (2005). Soil organic matter decomposition: Effect of organic matter addition on P dynamics in lateritic soils. The University of Western Australia.

Yusran, F. H. (2010). The Relationship between Phosphate Adsorption and Soil Organic Carbon from Organic Matter Addition. Journal of Tropical Soils, 15(1), 1–10. https://doi.org/10.5400/jts.2010.v15i1.1-10.




DOI: http://dx.doi.org/10.5400/jts.2025.v30i1.9-16

Refbacks

  • There are currently no refbacks.


INDEXING SITE

University of OxfordColumbia University LibraryStanford Crossref EBSCO

DOAJ


Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.