Study of the Quality of Biogeotextile Materials as Semi-Organic Mulch on Saline Land
Abstract
Degraded land affects almost all ecosystems and can harm the progress and quality of human life, so it needs attention. Saline soil is a land degradation with high salt content that causes toxic effects and increases root osmotic pressure and inhibiting plant growth. One of the solution is using organic mulch processed into biogeotextiles because it can provide solutions for erosion control and soil stabilization while minimizing negative impacts on the ecosystem. This research was conducted from May to August 2023 in the experimental garden of the Faculty of Agriculture UPN 'Veteran' East Java. This study used a group randomized design with one factor, the type of geotextile material consisting of reed grass (RG), straw (ST), Pandanus odorifer (PO), and sugarcane bagasse (SB). This research was conducted with a litterbox of 20x20 cm filled with 100 grams of biogeotextile material. The results obtained show that pandanus odorifer biogeotextile material is the best biogeotextile material because it can last a long time on the soil surface but can still be mineralized properly according to the results obtained, reducing the C / N ratio and C-Organic but increasing total nitrogen. Decomposition is closely related to the materials' quality rather than external factors. The quality of the material, namely lignin, organic carbon, C/N ratio, and nitrogen, influences the decomposition process.
Keywords
References
Andrianto, F., Bintoro, A., & Yuwono, S. B. (2015). Produksi dan Laju Dekomposisi Serasah Mangrove (rhizophora sp.) di Desa Durian dan Desa Batu Menyan Kecamatan Padang Cermin Kabupaten Pesawaran (Production and Decomposition Rate of Mangrove (Rhizophora sp.) Litter Leaf in Durian Village and Batu Menyan v. Sylva Lestari, 3(1), 9–20.
Azim, K., Soudi, B., Boukhari, S., Perissol, C., Roussos, S., & Thami Alami, I. (2018). Composting parameters and compost quality: A literature review. Organic Agriculture, 8, 141–158.
Bains, S., Kaur, R., Sethi, M., Gupta, M., & Kaur, T. (2021). Rice straw mulch mats–biodegradable alternative to herbicides in papaya.
Baldrian, P. (2017). Microbial activity and the dynamics of ecosystem processes in forest soils. Current Opinion in Microbiology, 37, 128–134.
Biswas, T., & Kole, S. C. (2017). Soil organic matter and microbial role in plant productivity and soil fertility. Advances in Soil Microbiology: Recent Trends and Future Prospects: Volume 2: Soil-Microbe-Plant Interaction, 219–238.
Chen, Y., Chen, S., Zhang, B., Ma, X., Liu, X., Huang, Y., & Zhang, Y. (2023). Divergent Decomposition Patterns of Leaf Litter and Fine Roots from an Urban Forest in Mid-Subtropical China. Forests, 14(9), 1741.
Dhaliwal, S., Naresh, R., Mandal, A., Singh, R., & Dhaliwal, M. (2019). Dynamics and transformations of micronutrients in agricultural soils as influenced by organic matter build-up: A review. Environmental and Sustainability Indicators, 1, 100007.
El-mrini, S., Aboutayeb, R., & Zouhri, A. (2022). Effect of initial C/N ratio and turning frequency on quality of final compost of turkey manure and olive pomace. Journal of Engineering and Applied Science, 69(1), 1–20. https://doi.org/10.1186/s44147-022-00092-6
Fang, S., Xie, B., Liu, D., & Liu, J. (2011). Effects of mulching materials on nitrogen mineralization, nitrogen availability and poplar growth on degraded agricultural soil. New Forests, 41(2), 147–162. https://doi.org/10.1007/s11056-010-9217-9
Haribowo, R., Asmaranto, R., Kusuma, L. T. W. N., & Amrina, B. G. (2022). Assessment of Mulch Material Effect on Surface Runoff, Soil Loss, and Water Quality in an Agricultural Region. AGRIVITA Journal of Agricultural Science, 44(3), 459–469.
Iqbal, R., Raza, M. A. S., Valipour, M., Saleem, M. F., Zaheer, M. S., Ahmad, S., Toleikiene, M., Haider, I., Aslam, M. U., & Nazar, M. A. (2020). Potential agricultural and environmental benefits of mulches—A review. Bulletin of the National Research Centre, 44, 1–16.
Karolinoerita, V., & Annisa, W. (2020). Salinisasi lahan dan permasalahannya di Indonesia. Jurnal Sumberdaya Lahan, 14(2), 91–99.
Kautsar, V., Tang, S., Kimani, S. M., Tawaraya, K., Wu, J., Toriyama, K., Kobayashi, K., & Cheng, W. (2022). Carbon decomposition and nitrogen mineralization of foxtail and milk vetch incorporated into paddy soils for different durations of organic farming. Soil Science and Plant Nutrition, 68(1), 158–166. https://doi.org/10.1080/00380768.2021.2024424
Khaopakro, S., Theerakitthanakul, K., Limchareon, S., Tohdam, S., Yodruk, A., & Krainara, P. (2020). Anatomical and Fiber Characteristics of Pandanus amaryllifolias Roxb. And P. odorifer (Forssk.) Kuntze (Pandanaceae) Leaves. Burapha Science Journal, 151–167.
Kusmana, C., & Yentiana, R. A. (2021). Laju Dekomposisi Serasah Daun Shorea guiso di Hutan Penelitian Dramaga, Bogor, Jawa Barat. Journal of Tropical Silviculture, 12(3), 172–177.
Lestariningsih, I. D., Widianto, W., Agustina, C., Sudarto, S., & Kurniawan, S. (2018). Relationship between land degradation, biophysical and social factors in Lekso Watershed, East Java, Indonesia. Journal of Degraded and Mining Lands Management, 5(3), 1283.
Nasim, N., Sandeep, I. S., Nayak, S., & Mohanty, S. (2021). Cultivation and Utilization of Pandanus odorifer for Industrial Application. In H. M. Ekiert, K. G. Ramawat, & J. Arora (Eds.), Medicinal Plants (Vol. 28, pp. 435–456). Springer International Publishing. https://doi.org/10.1007/978-3-030-74779-4_15
Osok, R. M., Talakua, S. M., & Supriadi, D. (2018). Penetapan Kelas Kemampuan Lahan dan Arahan Rehabilitasi Lahan Das Wai Batu Merah Kota Ambon Provinsi Maluku. Agrologia, 7(1), 288753.
Pérez, J., Ferreira, V., Graça, M. A., & Boyero, L. (2021). Litter quality is a stronger driver than temperature of early microbial decomposition in oligotrophic streams: A microcosm study. Microbial Ecology, 82(4), 897–908.
Prambauer, M., Wendeler, C., Weitzenböck, J., & Burgstaller, C. (2019). Biodegradable geotextiles–An overview of existing and potential materials. Geotextiles and Geomembranes, 47(1), 48–59.
Ramos, S. M., Graça, M. A., & Ferreira, V. (2021). A comparison of decomposition rates and biological colonization of leaf litter from tropical and temperate origins. Aquatic Ecology, 55(3), 925–940.
Sahupala, A., Siahaya, T. E., Seipala, B. B., Siahaya, L., Pelupessy, L., & Komul, Y. D. (2021). Species of pandan (Pandanus sp) in Gorom Island, East Seram Regency. IOP Conference Series: Earth and Environmental Science, 883(1), 012009. https://iopscience.iop.org/article/10.1088/1755-1315/883/1/012009/meta
Su, Z., Zhu, X., Wang, Y., Mao, S., & Shangguan, Z. (2022). Litter C and N losses at different decomposition stages of Robinia pseudoacacia: The weaker effects of soil enzyme activities compared with those of litter quality and the soil environment. Frontiers in Environmental Science, 10, 956309.
Tanasă, F., Nechifor, M., Ignat, M.-E., & Teacă, C.-A. (2022). Geotextiles—A versatile tool for environmental sensitive applications in geotechnical engineering. Textiles, 2(2), 189–208.
Teli, M. D., & Jadhav, A. (2015). Mechanical extraction and physical characterization of Pandanus Odorifer Lignocellulosic fibre. Int J Sci Res (IJSR) ISSN, 6. https://www.researchgate.net/profile/Akshay-Jadhav-8/publication/313477569_Mechanical_Extraction_and_Physical_Characterization_of_Pandanus_Odorifer_Lignocellulosic_Fibre/links/589c22e2458515e5f454aba1/Mechanical-Extraction-and-Physical-Characterization-of-Pandanus-Odorifer-Lignocellulosic-Fibre.pdf
Timsina, J. (2018). Can organic sources of nutrients increase crop yields to meet global food demand? Agronomy, 8(10), 214.
Xu, D., Qiu, X., & Xu, Z. (2017). Effect of Water Hyacinth Mulch on Soil Temperature, Water Content and Maize (Zea mays L.) yield in Southeast China. Environmental Engineering & Management Journal (EEMJ), 16(1).
Xu, M., Zhi, R., Jian, J., Feng, Y., Han, X., & Zhang, W. (2023). Changes in Soil Organic C Fractions and C Pool Stability Are Mediated by C-Degrading Enzymes in Litter Decomposition of Robinia pseudoacacia Plantations. Microbial Ecology, 86(2), 1189–1199. https://doi.org/10.1007/s00248-022-02113-6
Yan, J., Wang, L., Hu, Y., Tsang, Y. F., Zhang, Y., Wu, J., Fu, X., & Sun, Y. (2018). Plant litter composition selects different soil microbial structures and in turn drives different litter decomposition pattern and soil carbon sequestration capability. Geoderma, 319, 194–203.
Yang, Y., Yang, J., Zhao, T., Huang, X., & Zhao, P. (2016). Ecological restoration of highway slope by covering with straw-mat and seeding with grass–legume mixture. Ecological Engineering, 90, 68–76.
Zhang, X., Qian, Y., & Cao, C. (2015). Effects of straw mulching on maize photosynthetic characteristics and rhizosphere soil micro-ecological environment. Chilean Journal of Agricultural Research, 75(4), 481–487.
Zhao, L., Jia, K., Liu, X., Li, J., & Xia, M. (2023). Assessment of land degradation in Inner Mongolia between 2000 and 2020 based on remote sensing data. Geography and Sustainability, 4(2), 100–111.
Zhou, X., Dong, K., Tang, Y., Huang, H., Peng, G., & Wang, D. (2023). Research progress on the decomposition process of plant litter in wetlands: A review. Water, 15(18), 3246.
Zhou, Z., Li, Z., Chen, K., Chen, Z., Zeng, X., Yu, H., Guo, S., Shangguan, Y., Chen, Q., & Fan, H. (2021). Changes in soil physicochemical properties and bacterial communities at different soil depths after long-term straw mulching under a no-till system. Soil, 7(2), 595–609.
DOI: http://dx.doi.org/10.5400/jts.2025.v30i2.%25p
Refbacks
- There are currently no refbacks.
INDEXING SITE
This work is licensed under a Creative Commons Attribution 4.0 International License.