The Dynamics of Soil Organic Matter Fractions in Cacao-Based Agroforestry Systems
Abstract
Keywords
Full Text:
PDFReferences
Barrios, E., Buresh, R. J., & Sprent, J. I. (1996). Nitrogen mineralization in density fractions of soil organic matter from maize and legume cropping systems. Soil Biology and Biochemistry, 28(10), 1459-1465. https://doi.org/https://doi.org/10.1016/S0038-0717(96)00155-1
Boone, R. D. (1994). Light-fraction soil organic matter: origin and contribution to net nitrogen mineralization. Soil Biology and Biochemistry, 26(11), 1459–1468. https://doi.org/https://doi.org/10.1016/0038-0717(94)90085-X
Bremer, E., Janzen, H. H., & Johnston, A. M. (1994). Sensitivity of total, light fraction, and mineralizable organic matter to management practices in a Lethbridge soil. Canadian Journal of Soil Science, 74(2), 131-138. https://doi.org/10.4141/cjss94-020
Castellano, M. J., Mueller, K. E., Olk, D. C., Sawyer, J. E., & Six, J. (2015). Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Global Change Biology, 21(9), 3200–3209. https://doi.org/https://doi.org/10.1111/gcb.12982
Chaplot, V., & Cooper, M. (2015). Soil aggregate stability to predict organic carbon outputs from soils. Geoderma, 243-244, 205-213. https://doi.org/https://doi.org/10.1016/j.geoderma.2014.12.013
Chevallier, T. (2011). Physical Protection of Organic Carbon in Soil Aggregates. In J. Gliñski, J. Horabik, & J. Lipiec (Eds.), Encyclopedia of Agrophysics (pp. 592-595). Springer Netherlands. https://doi.org/10.1007/978-90-481-3585-1_197
De Laurentiis, V., Maier, S., Horn, R., Uusitalo, V., Hiederer, R., Chéron-Bessou, C., Morais, T., Grant, T., Milà i Canals, L., & Sala, S. (2024). Soil organic carbon as an indicator of land use impacts in life cycle assessment. The International Journal of Life Cycle Assessment, 29(7), 1190-1208. https://doi.org/10.1007/s11367-024-02307-9
Fontaine, S., Barot, S., Barré, P., Bdioui, N., Mary, B., & Rumpel, C. (2007). Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 450(7167), 277-280. https://doi.org/10.1038/nature06275
Gelman, A., & Hill, J. (2006). Data analysis using regression and multilevel/hierarchical models. Cambridge University Press.
Gregorich, E., Monreal, C. M., Schnitzer, M. I., & Schulten, H.-r. (1996). Transformation of plant residues into soil organic matter: Chemical characterization of plant tissue, isolated soil fractions, and whole soils. Soil Science, 161, 680-693.
Gross, C. D., & Harrison, R. B. (2019). The Case for Digging Deeper: Soil Organic Carbon Storage, Dynamics, and Controls in Our Changing World. Soil Systems, 3(2). https://doi.org/10.3390/soilsystems3020028
Hairiah, K., Sulistyani, H., Suprayogo, D., Widianto, Purnomosidhi, P., Widodo, R. H., & van Noordwijk, M. (2006). Litter layer residence time in forest and coffee agroforestry systems in Sumberjaya, West Lampung. Forest Ecology and Management, 224(1-2), 45-57. https://doi.org/https://doi.org/10.1016/j.foreco.2005.12.007
Janzen, H. H., Campbell, C. A., Brandt, S. A., Lafond, G. P., & Townley-Smith, L. (1992). Light-fraction organic matter in soils from long-term crop rotations. Soil Science Society of America Journal, 56, 1799-1806.
Kay, B. D., Lal, R., Kimble, J. M., Follett, R. F., & Stewart, B. A. (1998). Soil structure and organic carbon: a review.
Lal, R. (2004). Soil carbon sequestration to mitigate climate change. Geoderma, 123(1), 1-22. https://doi.org/https://doi.org/10.1016/j.geoderma.2004.01.032
Lal, R. (2009). Challenges and opportunities in soil organic matter research. European Journal of Soil Science, 60(2), 158–169. https://doi.org/https://doi.org/10.1111/j.1365-2389.2008.01114.x
Lavallee, J. M., Soong, J. L., & Cotrufo, M. F. (2020). Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Global Change Biology, 26(1), 261–273. https://doi.org/https://doi.org/10.1111/gcb.14859
Lehmann, J., & Kleber, M. (2015). The contentious nature of soil organic matter. Nature, 528(7580), 60-68.
Lorenz, K., & Lal, R. (2005). The Depth Distribution of Soil Organic Carbon in Relation to Land Use and Management and the Potential of Carbon Sequestration in Subsoil Horizons. In Advances in Agronomy (Vol. 88, pp. 35-66). Academic Press. https://doi.org/https://doi.org/10.1016/S0065-2113(05)88002-2
Ludwig, M., Achtenhagen, J., Miltner, A., Eckhardt, K.-U., Leinweber, P., Emmerling, C., & Thiele-Bruhn, S. (2015). Microbial contribution to SOM quantity and quality in density fractions of temperate arable soils. Soil Biology and Biochemistry, 81, 311-322. https://doi.org/https://doi.org/10.1016/j.soilbio.2014.12.002
Lützow, M. v., Kögel-Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G., Marschner, B., & Flessa, H. (2006). Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review. European Journal of Soil Science, 57(4), 426-445. https://doi.org/https://doi.org/10.1111/j.1365-2389.2006.00809.x
Luxi, H., Yong, G., Defu, W., Xiaojing, C., Huimin, Z., Jiamao, Y., & Miaomiao, G. (2024). Natural grassland restoration exhibits enhanced carbon sequestration and soil improvement potential in northern sandy grasslands of China: An empirical study. Catena, 246, 108396. https://doi.org/https://doi.org/10.1016/j.catena.2024.108396
Meijboom, F. W., Hassink, J., & Van Noordwijk, M. (1995). Density fractionation of soil macroorganic matter using silica suspensions. Soil Biology and Biochemistry, 27(8), 1109-1111. https://doi.org/https://doi.org/10.1016/0038-0717(95)00028-D
Naylor, D., McClure, R., & Jansson, J. (2022). Trends in Microbial Community Composition and Function by Soil Depth. Microorganisms, 10(3). https://doi.org/10.3390/microorganisms10030540
Ontl, T. A., Cambardella, C. A., Schulte, L. A., & Kolka, R. K. (2015). Factors influencing soil aggregation and particulate organic matter responses to bioenergy crops across a topographic gradient. Geoderma, 255-256, 1-11. https://doi.org/https://doi.org/10.1016/j.geoderma.2015.04.016
Poeplau, C., Don, A., Six, J., Kaiser, M., Benbi, D., Chenu, C., Cotrufo, M. F., Derrien, D., Gioacchini, P., Grand, S., Gregorich, E., Griepentrog, M., Gunina, A., Haddix, M., Kuzyakov, Y., Kühnel, A., Macdonald, L. M., Soong, J., Trigalet, S.,…Nieder, R. (2018). Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils – A comprehensive method comparison. Soil Biology and Biochemistry, 125, 10–26. https://doi.org/https://doi.org/10.1016/j.soilbio.2018.06.025
R-Core-Team. (2022). R: A language and environment for statistical computing. In R Foundation for Statistical Computing. http://www.r-project.org/index.html
Rumpel, C., & Kögel-Knabner, I. (2011). Deep soil organic matter—a key but poorly understood component of the terrestrial C cycle. Plant and Soil, 338(1), 143-158. https://doi.org/10.1007/s11104-010-0391-5
Santos, J. A. d., Santos, A. d. D. d., Costa, C. R., Araujo, A. S. d., Leite, G. G., Coser, T. R., & Figueiredo, C. C. d. (2024). Fractions of Organic Matter and Soil Carbon Balance in Different Phases of an Agroforestry System in the Cerrado: A Ten-Year Field Assessment. Soil Systems, 8(2). https://doi.org/10.3390/soilsystems8020044
Saputra, D. D., Khasanah, N. m., Sari, R. R., & van Noordwijk, M. (2024). Avoidance of tree-site mismatching of modelled cacao production systems across climatic zones: Roots for multifunctionality. Agricultural Systems, 216, 103895. https://doi.org/https://doi.org/10.1016/j.agsy.2024.103895
Saputra, D. D., Sari, R. R., Hairiah, K., Roshetko, J. M., Suprayogo, D., & van Noordwijk, M. (2020). Can cocoa agroforestry restore degraded soil structure following conversion from forest to agricultural use? Agroforestry Systems. https://doi.org/https://doi.org/10.1007/s10457-020-00548-9
Sari, R., Saputra, D., Hairiah, K., Rozendaal, D., Roshetko, J., & van Noordwijk, M. (2020). Gendered species preferences link tree diversity and carbon stocks in cacao agroforests in Southeast Sulawesi, Indonesia. Land, 9(4). https://doi.org/https://doi.org/10.3390/land9040108
Sari, R. R., Rozendaal, D. M. A., Saputra, D. D., Hairiah, K., Roshetko, J. M., & van Noordwijk, M. (2022). Balancing litterfall and decomposition in cacao agroforestry systems. Plant and Soil. https://doi.org/https://doi.org/10.1007/s11104-021-05279-z
Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D. A. C., Nannipieri, P., Rasse, D. P., Weiner, S., & Trumbore, S. E. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478(7367), 49-56. https://doi.org/10.1038/nature10386
Sheng, H., Zhou, P., Zhang, Y., Kuzyakov, Y., Zhou, Q., Ge, T., & Wang, C. (2015). Loss of labile organic carbon from subsoil due to land-use changes in subtropical China. Soil Biology and Biochemistry, 88, 148–157. https://doi.org/https://doi.org/10.1016/j.soilbio.2015.05.015
Sitompul, S. M., Hairiah, K., Cadisch, G., & Van Noordwijk, M. (2000). Dynamics of density fractions of macro-organic matter after forest conversion to sugarcane and woodlots, accounted for in a modified Century model. NJAS: Wageningen Journal of Life Sciences, 48(1), 61-73. https://doi.org/10.1016/S1573-5214(00)80005-6
Six, J., Conant, R. T., Paul, E. A., & Paustian, K. (2002). Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 241(2), 155-176. https://doi.org/10.1023/A:1016125726789
Sollins, P., Homann, P., & Caldwell, B. A. (1996). Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma, 74(1), 65-105. https://doi.org/https://doi.org/10.1016/S0016-7061(96)00036-5
Stevens, J. T., Safford, H. D., Harrison, S., & Latimer, A. M. (2015). Forest disturbance accelerates thermophilization of understory plant communities. Journal of Ecology, 103(5), 1253–1263. https://doi.org/https://doi.org/10.1111/1365-2745.12426.
Tan, Z., Lal, R., Owens, L., & Izaurralde, R. C. (2007). Distribution of light and heavy fractions of soil organic carbon related to land use and tillage practice. Soil and Tillage Research, 92(1), 53-59. https://doi.org/https://doi.org/10.1016/j.still.2006.01.003
Vaast, P., Harmand, J.-M., Rapidel, B., Jagoret, P., & Deheuvels, O. (2016). Coffee and Cocoa Production in Agroforestry—A Climate-Smart Agriculture Model. In E. Torquebiau (Ed.), Climate Change and Agriculture Worldwide (pp. 209-224). Springer Netherlands. https://doi.org/https://doi.org/10.1007/978-94-017-7462-8_16
van Noordwijk, M., Cerri, C., Woomer, P. L., Nugroho, K., & Bernoux, M. (1997). Soil carbon dynamics in the humid tropical forest zone. Geoderma, 79(1), 187-225. https://doi.org/https://doi.org/10.1016/S0016-7061(97)00042-6
Walkley, A., & Black, I. A. (1934). An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–38. https://journals.lww.com/soilsci/Fulltext/1934/01000/AN_EXAMINATION_OF_THE_DEGTJAREFF_METHOD_FOR.3.aspx
Whalen, J. K., Bottomley, P. J., & Myrold, D. D. (2000). Carbon and nitrogen mineralization from light- and heavy-fraction additions to soil. Soil Biology and Biochemistry, 32(10), 1345–1352. https://doi.org/https://doi.org/10.1016/S0038-0717(00)00040-7
World-Agroforestry-Centre. (2014). Peta Tutupan Lahan Kabupaten Konaweha, Sulawesi Tenggara. In. Bogor, Indonesia: World Agroforestry Centre.
DOI: http://dx.doi.org/10.5400/jts.2025.v30i2.103-112
Refbacks
- There are currently no refbacks.
INDEXING SITE
This work is licensed under a Creative Commons Attribution 4.0 International License.