The Dynamics of Soil Organic Matter Fractions in Cacao-Based Agroforestry Systems

Rika Ratna Sari, Carla Leany Sapulete, Danny Dwi Saputra, Kurniatun Hairiah

Abstract


Soil degradation is an important problem affecting crop production, especially in cocoa agroforestry systems, where soil health is crucial for optimal results. However, the effect of land management on changes in soil organic matter (SOM) content is often not visible through measurements of total soil organic carbon (SOC) content. This study investigates the distribution of soil organic matter fractions across various land-use gradients and soil depths in cacao-based agroforestry landscapes in Southeast Sulawesi, Indonesia. Soil samples were collected from three villages representing different parts of a watershed and subjected to density fractionation to separate light (LF), intermediate (IF), and heavy (HF) fractions. Our results indicate that remnant forests (RF) maintain higher total SOM fractions, followed by cacao-based complex and simple agroforestry (CAF, SAF), particularly in the 0-10 cm soil depth. In contrast, annual crops (CR), exhibit the lowest SOM fractions. Standing litter and decomposition rates significantly influence the LF, while HF shows minimal variation across land-use systems, suggesting long-term stability. The LF also strongly correlates with SOC content, highlighting its responsiveness to recent organic inputs. The findings underscore the importance of diverse litter inputs and tree diversity in enhancing SOM fractions and SOC content in agroforestry systems. The study concludes that complex cacao-based agroforestry systems can effectively mimic natural forest conditions, promoting soil health. These insights provide valuable knowledge for sustainable land management practices to mitigate soil degradation and improve soil quality in cacao production systems.

Keywords


soil health; light fraction of SOM; soil quality; C organic

Full Text:

PDF

References


Barrios, E., Buresh, R. J., & Sprent, J. I. (1996). Nitrogen mineralization in density fractions of soil organic matter from maize and legume cropping systems. Soil Biology and Biochemistry, 28(10), 1459-1465. https://doi.org/https://doi.org/10.1016/S0038-0717(96)00155-1

Boone, R. D. (1994). Light-fraction soil organic matter: origin and contribution to net nitrogen mineralization. Soil Biology and Biochemistry, 26(11), 1459–1468. https://doi.org/https://doi.org/10.1016/0038-0717(94)90085-X

Bremer, E., Janzen, H. H., & Johnston, A. M. (1994). Sensitivity of total, light fraction, and mineralizable organic matter to management practices in a Lethbridge soil. Canadian Journal of Soil Science, 74(2), 131-138. https://doi.org/10.4141/cjss94-020

Castellano, M. J., Mueller, K. E., Olk, D. C., Sawyer, J. E., & Six, J. (2015). Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Global Change Biology, 21(9), 3200–3209. https://doi.org/https://doi.org/10.1111/gcb.12982

Chaplot, V., & Cooper, M. (2015). Soil aggregate stability to predict organic carbon outputs from soils. Geoderma, 243-244, 205-213. https://doi.org/https://doi.org/10.1016/j.geoderma.2014.12.013

Chevallier, T. (2011). Physical Protection of Organic Carbon in Soil Aggregates. In J. Gliñski, J. Horabik, & J. Lipiec (Eds.), Encyclopedia of Agrophysics (pp. 592-595). Springer Netherlands. https://doi.org/10.1007/978-90-481-3585-1_197

De Laurentiis, V., Maier, S., Horn, R., Uusitalo, V., Hiederer, R., Chéron-Bessou, C., Morais, T., Grant, T., Milà i Canals, L., & Sala, S. (2024). Soil organic carbon as an indicator of land use impacts in life cycle assessment. The International Journal of Life Cycle Assessment, 29(7), 1190-1208. https://doi.org/10.1007/s11367-024-02307-9

Fontaine, S., Barot, S., Barré, P., Bdioui, N., Mary, B., & Rumpel, C. (2007). Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 450(7167), 277-280. https://doi.org/10.1038/nature06275

Gelman, A., & Hill, J. (2006). Data analysis using regression and multilevel/hierarchical models. Cambridge University Press.

Gregorich, E., Monreal, C. M., Schnitzer, M. I., & Schulten, H.-r. (1996). Transformation of plant residues into soil organic matter: Chemical characterization of plant tissue, isolated soil fractions, and whole soils. Soil Science, 161, 680-693.

Gross, C. D., & Harrison, R. B. (2019). The Case for Digging Deeper: Soil Organic Carbon Storage, Dynamics, and Controls in Our Changing World. Soil Systems, 3(2). https://doi.org/10.3390/soilsystems3020028

Hairiah, K., Sulistyani, H., Suprayogo, D., Widianto, Purnomosidhi, P., Widodo, R. H., & van Noordwijk, M. (2006). Litter layer residence time in forest and coffee agroforestry systems in Sumberjaya, West Lampung. Forest Ecology and Management, 224(1-2), 45-57. https://doi.org/https://doi.org/10.1016/j.foreco.2005.12.007

Janzen, H. H., Campbell, C. A., Brandt, S. A., Lafond, G. P., & Townley-Smith, L. (1992). Light-fraction organic matter in soils from long-term crop rotations. Soil Science Society of America Journal, 56, 1799-1806.

Kay, B. D., Lal, R., Kimble, J. M., Follett, R. F., & Stewart, B. A. (1998). Soil structure and organic carbon: a review.

Lal, R. (2004). Soil carbon sequestration to mitigate climate change. Geoderma, 123(1), 1-22. https://doi.org/https://doi.org/10.1016/j.geoderma.2004.01.032

Lal, R. (2009). Challenges and opportunities in soil organic matter research. European Journal of Soil Science, 60(2), 158–169. https://doi.org/https://doi.org/10.1111/j.1365-2389.2008.01114.x

Lavallee, J. M., Soong, J. L., & Cotrufo, M. F. (2020). Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Global Change Biology, 26(1), 261–273. https://doi.org/https://doi.org/10.1111/gcb.14859

Lehmann, J., & Kleber, M. (2015). The contentious nature of soil organic matter. Nature, 528(7580), 60-68.

Lorenz, K., & Lal, R. (2005). The Depth Distribution of Soil Organic Carbon in Relation to Land Use and Management and the Potential of Carbon Sequestration in Subsoil Horizons. In Advances in Agronomy (Vol. 88, pp. 35-66). Academic Press. https://doi.org/https://doi.org/10.1016/S0065-2113(05)88002-2

Ludwig, M., Achtenhagen, J., Miltner, A., Eckhardt, K.-U., Leinweber, P., Emmerling, C., & Thiele-Bruhn, S. (2015). Microbial contribution to SOM quantity and quality in density fractions of temperate arable soils. Soil Biology and Biochemistry, 81, 311-322. https://doi.org/https://doi.org/10.1016/j.soilbio.2014.12.002

Lützow, M. v., Kögel-Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G., Marschner, B., & Flessa, H. (2006). Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review. European Journal of Soil Science, 57(4), 426-445. https://doi.org/https://doi.org/10.1111/j.1365-2389.2006.00809.x

Luxi, H., Yong, G., Defu, W., Xiaojing, C., Huimin, Z., Jiamao, Y., & Miaomiao, G. (2024). Natural grassland restoration exhibits enhanced carbon sequestration and soil improvement potential in northern sandy grasslands of China: An empirical study. Catena, 246, 108396. https://doi.org/https://doi.org/10.1016/j.catena.2024.108396

Meijboom, F. W., Hassink, J., & Van Noordwijk, M. (1995). Density fractionation of soil macroorganic matter using silica suspensions. Soil Biology and Biochemistry, 27(8), 1109-1111. https://doi.org/https://doi.org/10.1016/0038-0717(95)00028-D

Naylor, D., McClure, R., & Jansson, J. (2022). Trends in Microbial Community Composition and Function by Soil Depth. Microorganisms, 10(3). https://doi.org/10.3390/microorganisms10030540

Ontl, T. A., Cambardella, C. A., Schulte, L. A., & Kolka, R. K. (2015). Factors influencing soil aggregation and particulate organic matter responses to bioenergy crops across a topographic gradient. Geoderma, 255-256, 1-11. https://doi.org/https://doi.org/10.1016/j.geoderma.2015.04.016

Poeplau, C., Don, A., Six, J., Kaiser, M., Benbi, D., Chenu, C., Cotrufo, M. F., Derrien, D., Gioacchini, P., Grand, S., Gregorich, E., Griepentrog, M., Gunina, A., Haddix, M., Kuzyakov, Y., Kühnel, A., Macdonald, L. M., Soong, J., Trigalet, S.,…Nieder, R. (2018). Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils – A comprehensive method comparison. Soil Biology and Biochemistry, 125, 10–26. https://doi.org/https://doi.org/10.1016/j.soilbio.2018.06.025

R-Core-Team. (2022). R: A language and environment for statistical computing. In R Foundation for Statistical Computing. http://www.r-project.org/index.html

Rumpel, C., & Kögel-Knabner, I. (2011). Deep soil organic matter—a key but poorly understood component of the terrestrial C cycle. Plant and Soil, 338(1), 143-158. https://doi.org/10.1007/s11104-010-0391-5

Santos, J. A. d., Santos, A. d. D. d., Costa, C. R., Araujo, A. S. d., Leite, G. G., Coser, T. R., & Figueiredo, C. C. d. (2024). Fractions of Organic Matter and Soil Carbon Balance in Different Phases of an Agroforestry System in the Cerrado: A Ten-Year Field Assessment. Soil Systems, 8(2). https://doi.org/10.3390/soilsystems8020044

Saputra, D. D., Khasanah, N. m., Sari, R. R., & van Noordwijk, M. (2024). Avoidance of tree-site mismatching of modelled cacao production systems across climatic zones: Roots for multifunctionality. Agricultural Systems, 216, 103895. https://doi.org/https://doi.org/10.1016/j.agsy.2024.103895

Saputra, D. D., Sari, R. R., Hairiah, K., Roshetko, J. M., Suprayogo, D., & van Noordwijk, M. (2020). Can cocoa agroforestry restore degraded soil structure following conversion from forest to agricultural use? Agroforestry Systems. https://doi.org/https://doi.org/10.1007/s10457-020-00548-9

Sari, R., Saputra, D., Hairiah, K., Rozendaal, D., Roshetko, J., & van Noordwijk, M. (2020). Gendered species preferences link tree diversity and carbon stocks in cacao agroforests in Southeast Sulawesi, Indonesia. Land, 9(4). https://doi.org/https://doi.org/10.3390/land9040108

Sari, R. R., Rozendaal, D. M. A., Saputra, D. D., Hairiah, K., Roshetko, J. M., & van Noordwijk, M. (2022). Balancing litterfall and decomposition in cacao agroforestry systems. Plant and Soil. https://doi.org/https://doi.org/10.1007/s11104-021-05279-z

Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D. A. C., Nannipieri, P., Rasse, D. P., Weiner, S., & Trumbore, S. E. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478(7367), 49-56. https://doi.org/10.1038/nature10386

Sheng, H., Zhou, P., Zhang, Y., Kuzyakov, Y., Zhou, Q., Ge, T., & Wang, C. (2015). Loss of labile organic carbon from subsoil due to land-use changes in subtropical China. Soil Biology and Biochemistry, 88, 148–157. https://doi.org/https://doi.org/10.1016/j.soilbio.2015.05.015

Sitompul, S. M., Hairiah, K., Cadisch, G., & Van Noordwijk, M. (2000). Dynamics of density fractions of macro-organic matter after forest conversion to sugarcane and woodlots, accounted for in a modified Century model. NJAS: Wageningen Journal of Life Sciences, 48(1), 61-73. https://doi.org/10.1016/S1573-5214(00)80005-6

Six, J., Conant, R. T., Paul, E. A., & Paustian, K. (2002). Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 241(2), 155-176. https://doi.org/10.1023/A:1016125726789

Sollins, P., Homann, P., & Caldwell, B. A. (1996). Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma, 74(1), 65-105. https://doi.org/https://doi.org/10.1016/S0016-7061(96)00036-5

Stevens, J. T., Safford, H. D., Harrison, S., & Latimer, A. M. (2015). Forest disturbance accelerates thermophilization of understory plant communities. Journal of Ecology, 103(5), 1253–1263. https://doi.org/https://doi.org/10.1111/1365-2745.12426.

Tan, Z., Lal, R., Owens, L., & Izaurralde, R. C. (2007). Distribution of light and heavy fractions of soil organic carbon related to land use and tillage practice. Soil and Tillage Research, 92(1), 53-59. https://doi.org/https://doi.org/10.1016/j.still.2006.01.003

Vaast, P., Harmand, J.-M., Rapidel, B., Jagoret, P., & Deheuvels, O. (2016). Coffee and Cocoa Production in Agroforestry—A Climate-Smart Agriculture Model. In E. Torquebiau (Ed.), Climate Change and Agriculture Worldwide (pp. 209-224). Springer Netherlands. https://doi.org/https://doi.org/10.1007/978-94-017-7462-8_16

van Noordwijk, M., Cerri, C., Woomer, P. L., Nugroho, K., & Bernoux, M. (1997). Soil carbon dynamics in the humid tropical forest zone. Geoderma, 79(1), 187-225. https://doi.org/https://doi.org/10.1016/S0016-7061(97)00042-6

Walkley, A., & Black, I. A. (1934). An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–38. https://journals.lww.com/soilsci/Fulltext/1934/01000/AN_EXAMINATION_OF_THE_DEGTJAREFF_METHOD_FOR.3.aspx

Whalen, J. K., Bottomley, P. J., & Myrold, D. D. (2000). Carbon and nitrogen mineralization from light- and heavy-fraction additions to soil. Soil Biology and Biochemistry, 32(10), 1345–1352. https://doi.org/https://doi.org/10.1016/S0038-0717(00)00040-7

World-Agroforestry-Centre. (2014). Peta Tutupan Lahan Kabupaten Konaweha, Sulawesi Tenggara. In. Bogor, Indonesia: World Agroforestry Centre.




DOI: http://dx.doi.org/10.5400/jts.2025.v30i2.103-112

Refbacks

  • There are currently no refbacks.


INDEXING SITE

University of OxfordColumbia University LibraryStanford Crossref EBSCO

DOAJ


Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.