Influence of Land Use and Land Cover Variations on Soil Carbon Sequestration Potential in the Northern Madhupur Tract, Bangladesh

Main Article Content

Murad Ahmed Farukh
Nishat Tasnim
Rehana Khatun
Aslam Ali
Sadiqur Rahman

Abstract

This study examines the effects of diverse land use and land cover (LULC) types on soil physico-chemical properties and carbon sequestration potential in the northern Madhupur Tract, Bangladesh. Soil samples were collected from seven LULC types – sal forest, social forest, orchard, bare land, agricultural land, protected area, and built-up area across three depths (0–15 cm, 16–40 cm, and 41–70 cm) between April and September 2022. Key parameters analyzed included texture, bulk density, pH, electrical conductivity (EC), total nitrogen, available phosphorus, exchangeable potassium, available sulfur, organic carbon (OC), and soil organic carbon (SOC). Soil texture ranged from clay loam to clay. Bulk density was the lowest in built-up areas (1.57–1.62 g cm-³) and the highest in protected areas (1.97–2.20 g cm-³). Orchard soils had the highest surface moisture (23.26%). Surface soils showed the highest EC (0.82 dSm-1), total N (0.11%), available P (118.6 ppm), and OC (1.07%), while pH increased with depth, peaking at 6.15. SOC stock differed significantly among land uses (F = 6.56, p < 0.05), highest in social forests (138.67 Mg ha-¹) and built-up areas (134.04 Mg ha-¹). Corresponding CO‚  mitigation potentials were 508.93 Mg C ha-¹ and 491.34 Mg C ha-¹. Agricultural land had the lowest SOC stock (85.31 Mg ha-¹). Enhancing carbon storage through better land management is vital for sustainability and climate resilience.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

Influence of Land Use and Land Cover Variations on Soil Carbon Sequestration Potential in the Northern Madhupur Tract, Bangladesh. (2025). JOURNAL OF TROPICAL SOILS, 30(3), 175-188. https://doi.org/10.5400/jts.2025.v30i3.175-188

References

Ahmed, B., & Dewan, A. (2022). Land use and land cover changes and their impact on environment in Bangladesh. Springer.

Alamgir, M., Campbell, M. J., Sloan, S., Goosem, M., Clements, G. R., Mahmoud, M. I., & Laurance, W. F. (2021). Infrastructure expansion challenges sustainable development in Bangladesh. npj Sustainable Urbanization, *1*(1), 1–9. https://doi.org/10.1038/s42949-021-00017-9

Ali, S., Begum, F., Hayat, R., & Bohannam, B. J. M. (2017). Variation in soil organic carbon stock in different land uses and altitudes in Bagrot Valley, Northern Karakoram. Acta Agriculturae Scandinavica, Section B — Soil and Plant Science, *67*(6), 551–561.

Altrell, D. (2007). National forest and tree resources assessment 2005–2007, Bangladesh. Bangladesh Forest Department, Ministry of Environment and Forest.

Amelung, W., Bossio, D., de Vries, W., Kögel-Knabner, I., Lal, R., Lehmann, J., & Pan, G. (2020). Towards a global-scale soil climate mitigation strategy. Nature Communications, *11*(1), 1–10. https://doi.org/10.1038/s41467-020-18887-7

Arshad, M. A., Lowery, B., & Grossman, B. (1997). Physical tests for monitoring soil quality. In J. W. Doran & A. J. Jones (Eds.), Methods for assessing soil quality (pp. 123–141). Soil Science Society of America.

Bai, Y., Ma, L., Degen, A. A., Rafiq, M. K., Kuzyakov, Y., Zhao, J., Zhang, R., Zhang, T., Wang, W., Li, X., Long, R., & Shang, Z. (2020). Long-term active restoration of extremely degraded alpine grassland accelerated turnover and increased stability of soil carbon. Global Change Biology, *26*(12), 7217–7228. https://doi.org/10.1111/gcb.15361

Bajracharya, R. M., Lal, R., & Kimble, J. M. (2004). Erosion effects on carbon dioxide concentration and carbon flux from an Alfisol in Central Ohio. Soil and Tillage Research, *81*(2), 237–252.

Bajracharya, R. M., Sitaula, B. K., Shrestha, B. M., Awasthi, K. D., Balla, M. K., & Singh, B. R. (2004). Soil organic carbon status and dynamics in the central Nepal Middle Mountains. Journal of the Institute of Forestry, *12*, 28–44.

Bangladesh Bureau of Statistics. (2005). Statistical yearbook of Bangladesh 2004. Ministry of Planning, Government of Bangladesh.

Begum, K., Sikder, A. H. F., Khanom, S., Hossain, M. F., & Parveen, Z. (2015). Nutrient uptake by plants from different land types of Madhupur soils. Bangladesh Journal of Scientific Research, *28*(2), 113–121.

Berhanu, H. (2015). Evaluation of selected soil physicochemical properties across land use types and soil depth in Sum Be sub-watershed of West Showa Zone, central Ethiopia [Master’s thesis, Haramaya University].

Bewket, W., & Stroosnijder, L. (2003). Effects of agroecological land use succession on soil properties in the Chemoga watershed, Blue Nile basin, Ethiopia. Geoderma, *111*(1–2), 85–98.

Bhandari, S., & Bam, S. (2013). Comparative study of soil organic carbon (SOC) under forest, cultivated and barren land: A case of Chovar Village, Kathmandu. Nepal Journal of Science and Technology, *14*(1), 103–108.

Bhat, Z. A., Akther, F. A., Ganaie, A. Q., Rehman, H. U., Dar, N. A., & Gill, R. K. (2017). Nutrient status of grape orchard soils of Jammu and Kashmir, India. MOJ Ecology & Environmental Sciences, *2*(5), 1–8.

Biswas, T. D., & Mukherjee, S. K. (1987). A textbook of soil science. Tata McGraw-Hill.

Black, C. A. (Ed.). (1965). Methods of soil analysis, Part 2. American Society of Agronomy.

Blake, G. R., & Hartge, K. H. (1986). Bulk density. In A. Klute (Ed.), Methods of soil analysis: Part 1. Physical and mineralogical methods (2nd ed., pp. 363–375). Soil Science Society of America.

Bossio, D. A., Cook-Patton, S. C., Ellis, P. W., Fargione, J., Sanderman, J., Smith, P., & Griscom, B. W. (2020). The role of soil carbon in natural climate solutions. Nature Sustainability, *3*(5), 391–398. https://doi.org/10.1038/s41893-020-0491-z

Bremner, J. M., & Mulvaney, C. S. (1982). Nitrogen—Total. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis, Part 2: Chemical and microbiological properties (2nd ed., pp. 595–624). American Society of Agronomy.

Bünemann, E. K., Bongiorno, G., Bai, Z., Creamer, R. E., De Deyn, G., de Goede, R., & Brussaard, L. (2018). Soil quality – A critical review. Soil Biology and Biochemistry, *120*, 105–125. https://doi.org/10.1016/j.soilbio.2018.01.030

Chaudhari, P. R., Ahire, D. V., Ahire, V. D., Chkravarty, M., & Maity, S. (2013). Soil bulk density as related to soil texture, organic matter content and available total nutrients of Coimbatore soil. International Journal of Scientific and Research Publications, *3*(2), 1–8.

Chen, L., Gong, J., Fu, B., Huang, Z., Huang, Y., & Gui, L. (2007). Effect of land use conversion on soil organic carbon sequestration in the loess hilly area, loess plateau of China. Ecological Research, *22*(4), 641–648.

Chenu, C., Angers, D. A., Barré, P., Derrien, D., Arrouays, D., & Balesdent, J. (2019). Increasing organic carbon stocks in agricultural soils: Knowledge gaps and potential innovations. Global Food Security, *20*, 9–17. https://doi.org/10.1016/j.gfs.2019.01.001

Chung, H., Kim, S., & Lee, D. (2019). Impacts of land use change on climate: A review of current understanding and future challenges. Remote Sensing, *11*(6), 706. https://doi.org/10.3390/rs11060706

Davood, A. D., Bhawana, P., & Fulekar, M. H. (2014). Assessment of soil organic carbon stock of temperate coniferous forests in Northern Kashmir. International Journal of Environment, *4*(1), 161–178.

Denboba, A. (2021). Acidity status and lime requirement of soils of Ameya district, southwest showa, Ethiopia [Doctoral dissertation, Haramaya University].

Dhakal, S., Koirala, M., Sharma, E., & Subedi, N. R. (2010, June). Effect of land use change on soil organic carbon stock in Balkhu Khola watershed southwestern part of Kathmandu Valley, central Nepal [Conference paper]. International Conference on Environmental Science and Development, Cairo, Egypt.

Dhakhwa, G. B., Campbell, C. L., Jones, J. W., & Daniels, R. B. (1997). Estimating carbon sequestration in agroecosystems using a modified CENTURY model. Agricultural Systems, *54*(3), 435–450.

Don, A., Schumacher, J., & Freibauer, A. (2011). Impact of tropical land use change on soil organic carbon stocks–a meta analysis. Global Change Biology, *17*(4), 1658–1670. https://doi.org/10.1111/j.1365-2486.2010.02336.x

Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., & Kanninen, M. (2011). Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience, *4*(5), 293–297.

Egashira, K., Aramaki, K., Yoshimasa, M., Takeda, A., & Yamasaki, S. (2004). Rare earth elements and clay minerals of soils of the floodplains of three major rivers in Bangladesh. Geoderma, *120*(1–2), 7–15.

Fageria, N. K., Baligar, V. C., & Bailey, B. A. (2015). Role of cover crops in improving soil and row crop productivity. Communications in Soil Science and Plant Analysis, *46*(22), 2733–2755. https://doi.org/10.1080/00103624.2015.1089275

Farukh, M. A., Rani, K., Nashif, S. M., Khatun, R., Toma, L. T., Hyakumura, K., & Islam, K. K. (2023). Carbon stock mapping utilizing accumulated volume of sequestrated carbon at Bangladesh Agricultural University, Bangladesh. Sustainability, *15*(5), 4300. https://doi.org/10.3390/su15054300

Food and Agriculture Organization. (2020). Soil pollution: A hidden reality.

Ganai, A. Q., Dar, M. A., Chesti, M. H., Bhat, Z. A., Khanday, M., & Dar, N. A. (2018). Macronutrients status of apple (cv. red delicious) orchard soils of Jammu and Kashmir India. International Journal of Chemical Studies, *6*(2), 3314–3319.

Genxu, W., Jian, S., Qi, W., & Shiqiang, W. (2002). Soil organic carbon pool of grassland soils on the Qinghai–Tibetan Plateau and its global implication. Science of the Total Environment, *291*(1–3), 207–217.

Gray, J. M., Bishop, T. F., & Wilson, B. R. (2015). Factors controlling soil organic carbon stocks with depth in eastern Australia. Soil Science Society of America Journal, *79*(6), 1741–1751.

Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., & Woodbury, P. (2017). Natural climate solutions. Proceedings of the National Academy of Sciences, *114*(44), 11645–11650. https://doi.org/10.1073/pnas.1710465114

Haridjaja, O., Sabiham, S., & Dai, J. (2012). Soil carbon and nitrogen stocks under different land uses in tropical mountainous area. Journal of Tropical Soils, *17*(2), 105-112.

Heluf, G., & Wakene, N. (2006). Impact of land use and management practices on chemical properties of some soils of Bako area, Western Ethiopia. Ethiopian Journal of Natural Resources, *8*(2), 177–197.

Hossain, M. F., Chen, W., & Zhang, Y. (2020). Land use change and its impact on soil organic carbon storage in the coastal areas of Bangladesh. Science of the Total Environment, *726*, 138500. https://doi.org/10.1016/j.scitotenv.2020.138500

Huq, S., Islam, M. A., & Adnan, M. S. G. (2021). Monitoring deforestation and forest degradation using remote sensing in the Madhupur Sal Forests of Bangladesh. Environmental Challenges, *5*, 100252. https://doi.org/10.1016/j.envc.2021.100252

Integrated Protected Area Co-management Project. (2009). Site-level field appraisal for forest co-management: IPAC Madhupur site. International Resource Group.

Intergovernmental Panel on Climate Change. (2000). Land use, land-use change, and forestry: A special report of the IPCC. Cambridge University Press.

Intergovernmental Panel on Climate Change. (2021). Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. https://doi.org/10.1017/9781009157896

Islam, M. S. (2008). Soil fertility history, present status and future scenario in Bangladesh. Bangladesh Journal of Agriculture and Environment, *4*, 129–151.

Jackson, M. L. (1962). Soil chemical analysis. Prentice Hall.

Jemal, K., & Tesfaye, H. (2020). Soil physico-chemical property characterization along with different land use system in Gurage Zone, Southern Ethiopia. Modern Chemistry, *8*(3), 40–48.

Jin, Z., Shah, T., Zhang, L., Liu, H., Peng, S., & Nie, L. (2020). Effect of straw returning on soil organic carbon in rice–wheat rotation system: A review. Food and Energy Security, *9*(2), e200.

Jobbágy, E. G., & Jackson, R. B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, *10*(2), 423–436.

Jones, R., Smith, A., & Taylor, L. (2018). Soil carbon management in broader climate policy frameworks: Aligning national development with global climate targets. Environmental Policy and Climate Change, *15*(3), 345–358. https://doi.org/10.1016/j.envpol.2018.04.009

Karim, A., Rahman, M. M., & Hoque, A. (1994). Carbon storage in Sal (Shorea robusta) forest in Bangladesh. Forest Ecology and Management, *68*(3–4), 201–209.

Karltun, E., Lemenih, M., & Tolera, M. (2013). Comparing farmers’ perception of soil fertility change with soil properties and crop performance in Beseku, Ethiopia. Land Degradation & Development, *24*(3), 228–235.

Khan, M. A. S. A., Hoque, M. A., & Huda, M. K. (1997). Toposequences and soils of Madhupur tract. Soil Resources Development Institute (SRDI).

Khanday, M., Wani, J. A., Ram, D., & Kumar, S. (2018). Depth wise distribution of available nutrients of soils of horticultural growing areas of Ganderbal district of Kashmir valley. Journal of Pharmacognosy and Phytochemistry, *7*(1), 19–22.

Kiflu, A., & Beyene, S. (2013). Effects of different land use systems on selected soil properties in south Ethiopia. Journal of Soil Science and Environmental Management, *4*(5), 100–107.

Kooch, Y., Hosseini, S. M., & Mohammadi, J. (2020). Impacts of land use change on soil organic carbon and other soil properties: A review. Catena, *187*, 104396. https://doi.org/10.1016/j.catena.2019.104396

Kumar, U., Rashid, H., Tithi, N. H., & Mia, M. Y. (2019). Status of soil properties in relationship with soil pH in Madhupur tract of Tangail district in Bangladesh. Progressive Agriculture, *30*(3), 282–287.

Lal, R. (2008). Carbon sequestration. Philosophical Transactions of the Royal Society B: Biological Sciences, *363*(1492), 815–830.

Lal, R. (2009). Agriculture and climate change: An agenda for negotiation in Copenhagen; the potential for carbon sequestration. IFPRI Vision 2020 for Food, Agriculture, and the Environment, Focus 16, Brief S, 1–2.

Lal, R. (2021). Soil organic matter content and crop yield. Journal of Soil and Water Conservation, *76*(2), 37A-42A. https://doi.org/10.2489/jswc.2021.0204A

Lal, S. H., Bajracharya, R. M., & Sitaula, B. K. (2012). Forest and soil carbon stocks, pools and dynamics and potential climate change mitigation in Nepal. Journal of the Institute of Forestry, *12*, 800–811.

Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota – A review. Soil Biology and Biochemistry, *43*(9), 1812–1836. https://doi.org/10.1016/j.soilbio.2011.04.022

Liefeld, J., Bassin, S., & Fuhrer, J. (2005). Carbon stock in Swiss agriculture soils predicted by land use soil characteristics and altitude. Agriculture, Ecosystems & Environment, *105*(1–2), 225–266.

Mallick, S. R., Proshad, R., Islam, M. S., Sayeed, A., Uddin, M., Gao, J., & Zhang, D. (2019). Heavy metals toxicity of surface soils near industrial vicinity: A study on soil contamination in Bangladesh. Archives of Agriculture and Environmental Science, *4*(4), 356–368.

Matovic, D. (2011). Biochar as a viable carbon sequestration option: Global and Canadian perspective. Energy, *36*(4), 2011–2016.

Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., & Winowiecki, L. (2017). Soil carbon 4 per mille. Geoderma, *292*, 59–86. https://doi.org/10.1016/j.geoderma.2017.01.002

Olsen, S. R., Cole, C. U., Watanabe, F. S., & Dean, L. A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate (Circular No. 939). U.S. Department of Agriculture.

Ostle, N. J., Levy, P. E., Evans, C. D., & Smith, P. (2009). UK land use and soil carbon sequestration. Land Use Policy, *26*, S274–S283.

Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., & Smith, P. (2016). Climate-smart soils. Nature, *532*(7597), 49–57. https://doi.org/10.1038/nature17174

Portch, S., & Islam, M. S. (1984). Nutrient status of some of the more important agricultural soils of Bangladesh. In Proceedings of the International Symposium on Soil Test Crop Response Studies (pp. 97–106). Bangladesh Agricultural Research Council and Soil Science Society of Bangladesh.

Post, W. M., & Kwon, K. C. (2000). Soil carbon sequestration and land-use change: Processes and potential. Global Change Biology, *6*(3), 317–328.

Rahman, M. M., Jahan, S., & Haque, A. (2021). Land use change and its impact on soil organic carbon: A case study from the Madhupur Tract, Bangladesh. Journal of Environmental Management, *289*, 112487. https://doi.org/10.1016/j.jenvman.2021.112487

Rahman, M. S. (2015). Assessment of biomass and carbon stock in the Sal forests of Bangladesh. Forest Science and Technology, *11*(4), 211–216.

Ratul, A. A., Hoque, T. S., Islam, M. R., & Hoque, M. A. (2021). Physico-chemical properties of acid soils from Madhupur Tract and Northern and Eastern Piedmont Plains of Bangladesh. Asian Journal of Medical and Biological Research, *7*(1), 12–20.

Rumpel, C., & Kögel-Knabner, I. (2011). Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant and Soil, *338*(1), 143–158.

Saha, S., Islam, M. S., & Khatun, M. (2021). Estimation of soil organic carbon stock in Sal forest ecosystems of Bangladesh. Environmental Monitoring and Assessment, *193*(7), 1–13.

Sahu, S. C., Kumar, M., & Ravindranath, N. H. (2016). Carbon stocks in natural and planted mangrove forests of Mahanadi Mangrove Wetland, East Coast of India. Current Science, *110*(12), 2252–2260.

Saikh, H., Varadachari, C., & Ghosh, K. (1998). Effects of deforestation and cultivation on soil CEC and contents of exchangeable bases: a case study in Simplipal National Park, India. Plant and Soil, *204*(1), 67–75.

Sakin, E., Deliboran, A., & Tutar, E. (2011). Bulk density of the Harran Plain soils in relation to other soil properties. African Journal of Agricultural Research, *6*(7), 1750–1757.

Sartaj, S. S., Atkinson, L., Alawi, R. M., & Azhar, E. (2017). Viral infection and obesity: current status and future prospective. Current Drug Metabolism, *18*(9), 798–807.

Sartori, F., Lal, R., Ebinger, M. H., & Eaton, J. A. (2007). Changes in soil carbon and nutrient pools along a chronosequence of poplar plantations in the Columbia Plateau, Oregon, USA. Agriculture, Ecosystems & Environment, *122*(3), 325–339.

Shil, N. C., Saleque, M. A., Islam, M. R., & Jahiruddin, M. (2016). Soil fertility status of some of the intensive crop growing areas under major agro-ecological zones of Bangladesh. Bangladesh Journal of Agricultural Research, *41*(4), 735–757.

Shrestha, B. P., Singh, G. K., & Niraula, S. R. (2008). Work related complaints among dentists. Journal of Nepal Medical Association, *47*(170), 77–81.

Singh, D., Singh, A. K., Singh, A. K., & Gupta, S. K. (2020). Characterization of rice growing soil of Nagara block of Ballia District (U.P.), India. International Journal of Current Microbiology and Applied Sciences, *9*(4), 575–581.

Smith, P., Soussana, J. F., Angers, D., Schipper, L., Chenu, C., Rasse, D. P., & Lal, R. (2020). How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Global Change Biology, *26*(1), 219–241.

Takkar, P. N. (1998). Sulphur status of Indian Soils. In Proceedings of TSIFAI Symposium on Sulphur in Indian Agriculture (pp. 1–31). The Sulphur Institute.

Tshewang, J., & Sridith, K. (2022). Valley bottom wetland plant communities and their relationship with soil factors in the Gangtey-Phobji Wetland, WangdiPhodrang, Himalayan, Bhutan. Science, Technology and Engineering Journal, *44*(3).

Utami, S. N. H., & Kurniawan, S. (2019). The dynamics of soil organic carbon in relation to land use changes and soil management practices in the humid tropics. Journal of Tropical Soils, *24*(1), 1-10.

Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, *37*(1), 29–38.

Whitebread, A. M., Lofroy, R. B. D., & Blair, G. J. (1998). A survey of the impact of cropping on soil physical and chemical properties in north-eastern New South Wales. Soil Research, *36*(4), 669–681.

Wiesmeier, M., Hübner, R., & Kögel-Knabner, I. (2019). Degradation and rehabilitation of arable land — A global perspective. Global Sustainability, *2*, e8. https://doi.org/10.1017/sus.2019.8

Williams, C. H., & Steinbergs, A. (1959). Soil sulphur fractions as chemical indices of available sulphur in some Australian soils. Soil Research, *10*(2), 340–352.

Wu, P., Xiang, X., Xu, Z., Lu, C., Cheng, H., Lyu, X., Zhang, J., He, W., Deng, W., Lyu, Y., Lou, Q., & Hong, Y. (2016). Bacterial communities in rhizospheres of three mangrove tree species from Beilun estuary, China. PLOS ONE, *11*(11), e0164082.

Zhang, P., Chen, X., Wei, T., Yang, Z., Jia, Z., Yang, B., & Zhang, X. (2018). Effects of land use change on soil carbon storage and sequestration rate in the arid region of Northwest China: A meta-analysis. Global Ecology and Conservation, *16*, e00463. https://doi.org/10.1016/j.gecco.2018.e00463

Zhu, P., Saadati, H., & Khayatnezhad, M. (2021). Application of probability decision system and particle swarm optimization for improving soil moisture content. Water Supply, *21*(8), 4145–4152.

Zomer, R. J., Bossio, D. A., Sommer, R., & Verchot, L. V. (2017). Global sequestration potential of increased organic carbon in cropland soils. Scientific Reports, *7*(1), 1–8. https://doi.org/10.1038/s41598-017-15794-8