Advanced Modeling of Potato Productivity Using Soil Physical Properties and Vegetation Index Transformations

Main Article Content

Sudarto Sudarto
Aditya Nugraha Putra
http://orcid.org/0000-0002-9150-0849
Dwi Christina Fauziah
Agung Nugroho
Adithya Riefanto Suryoprojo
Novandi Rizky Prasetya
http://orcid.org/0009-0006-7472-4476
Michelle Talisia Sugiarto
http://orcid.org/0009-0000-5677-0475

Abstract

Global potato production reached approximately 383 million metric tons in 2025, with Indonesia contributing around 1.22 million metric tons (0.32% of global output). However, the sustainability of Indonesia’s potato production is increasingly threatened by soil quality degradation in key growing regions. Existing predictive studies have largely focused on soil physical properties, with limited incorporation of remote sensing technologies. This study investigates the potential of Unmanned Aerial Vehicle (UAV) as a high-resolution, non-invasive tool to estimate potato yield through vegetation index transformations. Utilizing a split-plot experimental design across elevation gradients, we integrated soil physical properties with UAV-derived vegetation indices—Visible Atmospherically Resistant Index (VARI), Green Leaf Index (GLI), and Normalized Green-Red Difference Index (NGRDI). Results reveal that Total Nitrogen (TN), Base Saturation, and Bulk Density significantly influence yield variability, and can be accurately estimated using NGRDI, GLI, and a modified GLI (GLI CS), respectively. A multiple linear regression model was developed to predict potato yield: y = 24.22 + 7.26(NGRDI) + 9.87(GLI) + 28.42(GLI CS). This research demonstrates the efficacy of UAV-based spectral analysis in enhancing yield prediction models, offering a scalable and precise approach for sustainable potato cultivation. Future work should incorporate machine learning to improve model robustness and assess applicability across varied agro-ecological contexts.

Downloads

Download data is not yet available.

Article Details

How to Cite
Sudarto, S., Putra, A. N., Fauziah, D. C., Nugroho, A., Suryoprojo, A. R., Prasetya, N. R., & Sugiarto, M. T. (2025). Advanced Modeling of Potato Productivity Using Soil Physical Properties and Vegetation Index Transformations. JOURNAL OF TROPICAL SOILS, 30(3). Retrieved from https://journal.unila.ac.id/index.php/tropicalsoil/article/view/675
Section
Articles

References

Anderson, T. W., & Darling, D. A. (1954). A Test of Goodness of Fit. Journal of the American Statistical Association, 49(268), 765–769. https://doi.org/10.1080/01621459.1954.10501232.

Badan Litbang Pertanian. (2018). Kentang Varietas Granola L. Http://Www.Litbang.Pertanian.Go.Id/Varietas/590/.

Badan Pusat Statistik. (2017). Statistik Tanaman Sayuran dan Buah‐buahan Semusim Indonesia 2017. Https://Www.Bps.Go.Id/Publication/2018/10/05/Bbd90b867a6ee372e7f51c43/Statistik-Tanaman-Sayuran-Dan-Buah-Buahan-Semusim-Indonesia-2017.Html.

Badan Pusat Statistik Kota Batu. (2018). Luas Panen dan Produksi Sayur-Sayubadaran Menurut Jenis Tanaman di Kota Batu 2017. Https://Batukota.Bps.Go.Id/Statictable/2018/12/13/329/Luas-Panen-Dan-Produksi-Sayur-Sayuran-Menurut-Jenis-Tanaman-Di-Kota-Batu-2017.Html.

Bagherzadeh, A., Gholizadeh, A., & Keshavarzi, A. (2018). Assessment of soil fertility index for potato production using integrated Fuzzy and AHP approaches, Northeast of Iran. EURASIAN JOURNAL OF SOIL SCIENCE (EJSS), 7(3), 203–212. https://doi.org/10.18393/ejss.399775.

Bewick, V., Cheek, L., & Ball, J. (2003). Statistics review 7: Correlation and regression. Critical Care, 7(6), 451. https://doi.org/10.1186/cc2401.

Black, C. A., Evans, D. D., & Dinauer, R. C. (1965). Methods of Soil Analysis (Vol. 9). American Society of Agronomy.

BRAY, R. H., & KURTZ, L. T. (1945). DETERMINATION OF TOTAL, ORGANIC, AND AVAILABLE FORMS OF PHOSPHORUS IN SOILS. Soil Science, 59(1), 39–46. https://doi.org/10.1097/00010694-194501000-00006.

Bremner, J. M., & Mulvaney, C. S. (1982). Nitrogen—Total (pp. 595–624). https://doi.org/10.2134/agronmonogr9.2.2ed.c31.

Cansler, C. A., & McKenzie, D. (2012). How Robust Are Burn Severity Indices When Applied in a New Region? Evaluation of Alternate Field-Based and Remote-Sensing Methods. Remote Sensing, 4(2), 456–483. https://doi.org/10.3390/rs4020456.

Ccopi, D., Ortega, K., Castañeda, I., Rios, C., Enriquez, L., Patricio, S., Ore, Z., Casanova, D., Agurto, A., Zuñiga, N., & Urquizo, J. (2024). Using UAV Images and Phenotypic Traits to Predict Potato Morphology and Yield in Peru. Agriculture, 14(11), 1876. https://doi.org/10.3390/agriculture14111876.

Faostat. (2019). Food and Agriculture Organization of the United Nations, 2019. Production: Crops.

Gee, G. W., & Bauder, J. W. (1986). Particle Size Analysis (2nd Edition). American Society of Agronomy/Soil Science Society of America.

Ghorbani, M., Amirahmadi, E., Bernas, J., & Konvalina, P. (2024). Testing Biochar’s Ability to Moderate Extremely Acidic Soils in Tea-Growing Areas. Agronomy, 14(3), 533. https://doi.org/10.3390/agronomy14030533.

Holmgren, G. G. S., Juve, R. L., & Geschwender, R. C. (1977). A Mechanically Controlled Variable Rate Leaching Device. Soil Science Society of America Journal, 41(6), 1207–1208. https://doi.org/10.2136/sssaj1977.03615995004100060041x.

Houba, J., van Der Lee, J., Novozamsky, I., & Walinga, I. (1988). Soil and Plants Analysis. Part 5, Soil Analysis Procedures. Wageningen University.

Huete, A. R., & Glenn, E. P. (2011). Advances in Environmental Remote Sensing: Sensors, Algorithms, and Applications. CRC Press.

Jackson, M. L. (1973). Soil Chemical Analysis. Advanced Course Ed. 2. A Manual of Methods Useful for Instruction and Research in Soil Chemistry, Physical Chemistry of Soils, Soil Fertility and Genesis Revised from Original Edition of 1965.

Jahan, M. A. H. S., Hossain, A., Sarkar, M. A. R., Teixeira da Silva, J. A., & Ferdousi, M. N. S. (2016). Productivity impacts and nutrient balances of an intensive potato-mungbean-rice crop rotation in multiple environments of Bangladesh. Agriculture, Ecosystems & Environment, 231, 79–97. https://doi.org/10.1016/j.agee.2016.06.032.

Jones, B., & Nachtsheim, C. J. (2009). Split-Plot Designs: What, Why, and How. Journal of Quality Technology, 41(4), 340–361. https://doi.org/10.1080/00224065.2009.11917790.

Kees, G. (2005). Hand-Held Electronic Cone Penetrometers for Measuring Soil Strength. Department of Agriculture, Forest Service, National Technology and Development Program.

Kelcey, J., & Lucieer, A. (2012). Sensor Correction of a 6-Band Multispectral Imaging Sensor for UAV Remote Sensing. Remote Sensing, 4(5), 1462–1493. https://doi.org/10.3390/rs4051462.

Klute, A. (2018). Water Retention: Laboratory Methods (pp. 635–662). https://doi.org/10.2136/sssabookser5.1.2ed.c26.

Koch, M., Naumann, M., Pawelzik, E., Gransee, A., & Thiel, H. (2020). The Importance of Nutrient Management for Potato Production Part I: Plant Nutrition and Yield. Potato Research, 63(1), 97–119. https://doi.org/10.1007/s11540-019-09431-2.

Li, D., Miao, Y., Gupta, S. K., Rosen, C. J., Yuan, F., Wang, C., Wang, L., & Huang, Y. (2021). Improving Potato Yield Prediction by Combining Cultivar Information and UAV Remote Sensing Data Using Machine Learning. Remote Sensing, 13(16), 3322. https://doi.org/10.3390/rs13163322.

Li, H., Zhang, J., & Wang, Y. (2024). Comparative Analysis of Four Methods for Accurate Estimation of Soil Phosphorus Storage Capacity: a Case Study in a Typical Red Soil. Eurasian Soil Science, 57(7), 1163–1175. https://doi.org/10.1134/S1064229323603402.

Montolalu, C., & Langi, Y. (2018). Pengaruh Pelatihan Dasar Komputer dan Teknologi Informasi bagi Guru-Guru dengan Uji-T Berpasangan (Paired Sample T-Test). D’CARTESIAN, 7(1), 44. https://doi.org/10.35799/dc.7.1.2018.20113.

Motsara, M., & Roy, R. N. (2008). Guide to Laboratory Establishment for Plant Nutrient Analysis. Food and Agriculture Organization of the United Nations.

Mukiibi, A., Machakaire, A. T. B., Franke, A. C., & Steyn, J. M. (2024). A Systematic Review of Vegetation Indices for Potato Growth Monitoring and Tuber Yield Prediction from Remote Sensing. Potato Research. https://doi.org/10.1007/s11540-024-09748-7.

Nduwumuremyi, A., Ruganzu, V., Mugwe, J. N., & Cyamweshi Rusanganwa, A. (2013). Effects of Unburned Lime on Soil pH and Base Cations in Acidic Soil. ISRN Soil Science, 2013, 1–7. https://doi.org/10.1155/2013/707569.

Nelson, D. W., & Sommers, L. E. (1982). Total Carbon, Organic Carbon, and Organic Matter (pp. 539–579). https://doi.org/10.2134/agronmonogr9.2.2ed.c29.

Nguy-Robertson, A., Gitelson, A., Peng, Y., Viña, A., Arkebauer, T., & Rundquist, D. (2012). Green Leaf Area Index Estimation in Maize and Soybean: Combining Vegetation Indices to Achieve Maximal Sensitivity. Agronomy Journal, 104(5), 1336–1347. https://doi.org/10.2134/agronj2012.0065.

Nicolaï, B. M., Beullens, K., Bobelyn, E., Peirs, A., Saeys, W., Theron, K. I., & Lammertyn, J. (2007). Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biology and Technology, 46(2), 99–118. https://doi.org/10.1016/j.postharvbio.2007.06.024.

Niethammer, U., Rothmund, S., Schwaderer, U., Zeman, J., & Joswig, M. (2012). OPEN SOURCE IMAGE-PROCESSING TOOLS FOR LOW-COST UAV-BASED LANDSLIDE INVESTIGATIONS. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII-1/C22, 161–166. https://doi.org/10.5194/isprsarchives-XXXVIII-1-C22-161-2011.

Nimmo, J. R. (2013). Porosity and Pore Size Distribution. In Reference Module in Earth Systems and Environmental Sciences. Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.05265-9.

Njane, S. N., Tsuda, S., van Marrewijk, B. M., Polder, G., Katayama, K., & Tsuji, H. (2023). Effect of varying UAV height on the precise estimation of potato crop growth. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1233349.

Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Government Printing Office.

Peech. (1965). Chemical soil tests (Vol. 960). Cornell Agric..

Prasetya, N. R., Putra, A. N., Rayes, M. L., & Utami, S. R. (2025). Enhancing soil total nitrogen prediction in rice fields using advanced Geo-AI integration of remote sensing data and environmental covariates. Smart Agricultural Technology, 10, 100741. https://doi.org/10.1016/j.atech.2024.100741.

Putra, A. N., Nita, I., Wicaksono, K. S., Prasetya, N. R., Sugiarto, M. T., Hidayat, F., Alim, Z., Sartono, S. E., Sasangka, P. G., Kusuma, T. R., Abbasi, B., Gessert, A., Ismail, M. H., & Khokthong, W. (2025). Potential erosion and sedimentation based on land use change by using cellular automata-artificial neural network. Geomatics, Natural Hazards and Risk, 16(1). https://doi.org/10.1080/19475705.2025.2461058.

Rayes, M. (2006). Deskripsi Profil Tanah di Lapangan. Unit Penerbitan Fakultas Pertanian Universitas Brawijaya.

Ribeiro, A. L. A., Maciel, G. M., Siquieroli, A. C. S., Luz, J. M. Q., Gallis, R. B. de A., Assis, P. H. de S., Catão, H. C. R. M., & Yada, R. Y. (2023). Vegetation Indices for Predicting the Growth and Harvest Rate of Lettuce. Agriculture, 13(5), 1091. https://doi.org/10.3390/agriculture13051091.

Richa. (2019). Atasi 306 Hektare Lahan Gagal Panen di Kecamatan Bumiaji Akibat Angin Kencang, Pemkot Batu Siapkan Anggaran Rp 2 Miliar. Malang TIMES.

Richard, G., Cousin, I., Sillon, J. F., Bruand, A., & Guérif, J. (2001). Effect of compaction on the porosity of a silty soil: influence on unsaturated hydraulic properties. European Journal of Soil Science, 52(1), 49–58. https://doi.org/10.1046/j.1365-2389.2001.00357.x.

Shofiyanti, R. (2011). Teknologi Pesawat Tanpa Awak untuk Pemetaan dan Pemantauan Tanaman dan Lahan Pertanian. Informatika Pertanian, 20(1), 58–64.

SNLCS, E. (1979). Manual de métodos de análise de solos.

Soil Conservation Service. (1984). Soil Survey Laboratory Methods and Procedures for Collecting Soil Samples. Soil Survey Invest.

Soil Survey Staff. (2014). Keys to Soil Taxonomy (12th Edition). USDA-Natural Resources Conservation Service.

Soil Survey Staff. (2022). Keys to Soil Taxonomy, 13th edition. Natural Resources Conservation Service.

Stark, J. C., Thornton, M., & Nolte, P. (Eds.). (2020). Potato Production Systems. Springer International Publishing. https://doi.org/10.1007/978-3-030-39157-7.

Wiratmoko, D. (2015). . PENGGUNAAN CITRA WORLDVIEW-2 UNTUK ESTIMASI PRODUKSI KELAPA SAWIT (Elaeis guineensis Jacq.) SEBAGAI IMPLEMENTASI PERTANIAN PRESISI (Studi di Unit Kebun Adolina, PT. Perkebunan Nusantara IV Kabupaten Serdang Berdagai, Propinsi Sumatera Utara). Gadjah Mada University.

Xie, Y., Clarke, B. P., Kim, Y. J., Ivey, A. L., Hill, P. S., Shi, Y., & Ren, Y. (2021). Cryo-EM structure of the yeast TREX complex and coordination with the SR-like protein Gbp2. ELife, 10. https://doi.org/10.7554/eLife.65699.

Zhang, W., Zhu, L., Zhuang, Q., Chen, D., & Sun, T. (2023). Mapping Cropland Soil Nutrients Contents Based on Multi-Spectral Remote Sensing and Machine Learning. Agriculture (Switzerland), 13(8). https://doi.org/10.3390/agriculture13081592.

Most read articles by the same author(s)