Integrating Soil Properties and Vegetation Indices for Modeling Potato Productivity
Main Article Content
Abstract
Global potato production reached approximately 383 million metric tons in 2025, with Indonesia contributing around 1.22 million metric tons (0.32% of global output). However, the sustainability of Indonesia’s potato production is increasingly threatened by soil quality degradation in key growing regions. Existing predictive studies have primarily focused on soil chemical properties, with limited incorporation of remote sensing technologies. This study investigates the potential of Unmanned Aerial Vehicle (UAV) as a high-resolution, non-destructive tool for estimating potato yield using vegetation index transformations. Utilizing a split-plot experimental design across elevation gradients, we integrated soil properties with UAV-derived vegetation indices—Visible Atmospherically Resistant Index (VARI), Green Leaf Index (GLI), and Normalized Green-Red Difference Index (NGRDI). Results reveal that total nitrogen, base saturation, and bulk density significantly influence yield variability, and can be accurately estimated using NGRDI, GLI, and a modified GLI (GLI CS), respectively. A multiple linear regression model was developed to predict potato yield = 24.22 + 7.26(NGRDI) + 9.87(GLI) + 28.42(GLI CS). This research demonstrates the efficacy of UAV-based spectral analysis in improving yield-prediction models, offering a scalable, precise approach for sustainable potato cultivation. Future work should incorporate machine learning to improve model robustness and assess applicability across varied agro-ecological contexts.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
License for Authors
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
License for Regular Users
Other regular users who want to cite, distribute, remix, tweak, and build upon author’s works, even for commercial purposes, should acknowledge the work’s authorship and initial publication in this journal, licensed under a Creative Commons Attribution License.
How to Cite
References
Anderson, T. W., & Darling, D. A. (1954). A Test of Goodness of Fit. Journal of the American Statistical Association, 49(268), 765–769. https://doi.org/10.1080/01621459.1954.10501232
Badan Litbang Pertanian. (2018). Kentang Varietas Granola L. Http://Www.Litbang.Pertanian.Go.Id/Varietas/590/ .
Badan Pusat Statistik. (2017). Statistik Tanaman Sayuran dan Buah buahan Semusim Indonesia 2017. Https://Www.Bps.Go.Id/Publication/2018/10/05/Bbd90b867a6ee372e7f51c43/Statistik-Tanaman-Sayuran-Dan-Buah-Buahan-Semusim-Indonesia-2017.Html .
Badan Pusat Statistik Kota Batu. (2018). Luas Panen dan Produksi Sayur-Sayubadaran Menurut Jenis Tanaman di Kota Batu 2017. Https://Batukota.Bps.Go.Id/Statictable/2018/12/13/329/Luas-Panen-Dan-Produksi-Sayur-Sayuran-Menurut-Jenis-Tanaman-Di-Kota-Batu-2017.Html.
Bagherzadeh, A., Gholizadeh, A., & Keshavarzi, A. (2018). Assessment of soil fertility index for potato production using integrated Fuzzy and AHP approaches, Northeast of Iran. EURASIAN JOURNAL OF SOIL SCIENCE (EJSS), 7(3), 203–212. https://doi.org/10.18393/ejss.399775
Bewick, V., Cheek, L., & Ball, J. (2003). Statistics review 7: Correlation and regression. Critical Care, 7(6), 451. https://doi.org/10.1186/cc2401
Black, C. A., Evans, D. D., & Dinauer, R. C. (1965). Methods of Soil Analysis (Vol. 9). American Society of Agronomy.
BRAY, R. H., & KURTZ, L. T. (1945). DETERMINATION OF TOTAL, ORGANIC, AND AVAILABLE FORMS OF PHOSPHORUS IN SOILS. Soil Science, 59(1), 39–46. https://doi.org/10.1097/00010694-194501000-00006
Bremner, J. M., & Mulvaney, C. S. (1982). Nitrogen—Total (pp. 595–624). https://doi.org/10.2134/agronmonogr9.2.2ed.c31
Ccopi, D., Ortega, K., Castañeda, I., Rios, C., Enriquez, L., Patricio, S., Ore, Z., Casanova, D., Agurto, A., Zuñiga, N., & Urquizo, J. (2024). Using UAV Images and Phenotypic Traits to Predict Potato Morphology and Yield in Peru. Agriculture, 14(11), 1876. https://doi.org/10.3390/agriculture14111876
Faostat. (2019). Food and Agriculture Organization of the United Nations, 2019. Production: Crops.
Gee, G. W., & Bauder, J. W. (1986). Particle Size Analysis (2nd Edition). American Society of Agronomy/Soil Science Society of America.
Ghorbani, M., Amirahmadi, E., Bernas, J., & Konvalina, P. (2024). Testing Biochar’s Ability to Moderate Extremely Acidic Soils in Tea-Growing Areas. Agronomy, 14(3), 533. https://doi.org/10.3390/agronomy14030533
Holmgren, G. G. S., Juve, R. L., & Geschwender, R. C. (1977). A Mechanically Controlled Variable Rate Leaching Device. Soil Science Society of America Journal, 41(6), 1207–1208. https://doi.org/10.2136/sssaj1977.03615995004100060041x
Houba, J., van Der Lee, J., Novozamsky, I., & Walinga, I. (1988). Soil and Plants Analysis. Part 5, Soil Analysis Procedures. Wageningen University.
Huete, A. R., & Glenn, E. P. (2011). Advances in Environmental Remote Sensing: Sensors, Algorithms, and Applications. CRC Press.
Jahan, M. A. H. S., Hossain, A., Sarkar, M. A. R., Teixeira da Silva, J. A., & Ferdousi, M. N. S. (2016). Productivity impacts and nutrient balances of an intensive potato-mungbean-rice crop rotation in multiple environments of Bangladesh. Agriculture, Ecosystems & Environment, 231, 79–97. https://doi.org/10.1016/j.agee.2016.06.032
Jones, B., & Nachtsheim, C. J. (2009). Split-Plot Designs: What, Why, and How. Journal of Quality Technology, 41(4), 340–361. https://doi.org/10.1080/00224065.2009.11917790
Kees, G. (2005). Hand-Held Electronic Cone Penetrometers for Measuring Soil Strength. Department of Agriculture, Forest Service, National Technology and Development Program.
Kelcey, J., & Lucieer, A. (2012). Sensor Correction of a 6-Band Multispectral Imaging Sensor for UAV Remote Sensing. Remote Sensing, 4(5), 1462–1493. https://doi.org/10.3390/rs4051462
Klute, A. (2018). Water Retention: Laboratory Methods (pp. 635–662). https://doi.org/10.2136/sssabookser5.1.2ed.c26
Koch, M., Naumann, M., Pawelzik, E., Gransee, A., & Thiel, H. (2020). The Importance of Nutrient Management for Potato Production Part I: Plant Nutrition and Yield. Potato Research, 63(1), 97–119. https://doi.org/10.1007/s11540-019-09431-2
Li, H., Zhang, J., & Wang, Y. (2024). Comparative Analysis of Four Methods for Accurate Estimation of Soil Phosphorus Storage Capacity: a Case Study in a Typical Red Soil. Eurasian Soil Science, 57(7), 1163–1175. https://doi.org/10.1134/S1064229323603402
Li, Y., Li, Z., Cui, S., Liang, G., & Zhang, Q. (2021). Microbial-derived carbon components are critical for enhancing soil organic carbon in no-tillage croplands: A global perspective. Soil and Tillage Research, 205, 104758. https://doi.org/10.1016/j.still.2020.104758
Mindari, W.-, Sasongko, P. E., & Santoso, S. B. (2023). Changes of Soil Physical and Chemical Characteristics of Vertisol by Organic Matter and Sands Applications. JOURNAL OF TROPICAL SOILS, 28(2), 79–87. https://doi.org/10.5400/jts.2023.v28i2.79-87
Montolalu, C., & Langi, Y. (2018). Pengaruh Pelatihan Dasar Komputer dan Teknologi Informasi bagi Guru-Guru dengan Uji-T Berpasangan (Paired Sample T-Test). D’CARTESIAN, 7(1), 44. https://doi.org/10.35799/dc.7.1.2018.20113
Mukiibi, A., Machakaire, A. T. B., Franke, A. C., & Steyn, J. M. (2024). A Systematic Review of Vegetation Indices for Potato Growth Monitoring and Tuber Yield Prediction from Remote Sensing. Potato Research. https://doi.org/10.1007/s11540-024-09748-7
Nduwumuremyi, A., Ruganzu, V., Mugwe, J. N., & Cyamweshi Rusanganwa, A. (2013). Effects of Unburned Lime on Soil pH and Base Cations in Acidic Soil. ISRN Soil Science, 2013, 1–7. https://doi.org/10.1155/2013/707569
Nelson, D. W., & Sommers, L. E. (1982). Total Carbon, Organic Carbon, and Organic Matter (pp. 539–579). https://doi.org/10.2134/agronmonogr9.2.2ed.c29
Nguy-Robertson, A., Gitelson, A., Peng, Y., Viña, A., Arkebauer, T., & Rundquist, D. (2012). Green Leaf Area Index Estimation in Maize and Soybean: Combining Vegetation Indices to Achieve Maximal Sensitivity. Agronomy Journal, 104(5), 1336–1347. https://doi.org/10.2134/agronj2012.0065
Nicolaï, B. M., Beullens, K., Bobelyn, E., Peirs, A., Saeys, W., Theron, K. I., & Lammertyn, J. (2007). Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biology and Technology, 46(2), 99–118. https://doi.org/10.1016/j.postharvbio.2007.06.024
Niethammer, U., Rothmund, S., Schwaderer, U., Zeman, J., & Joswig, M. (2012). OPEN SOURCE IMAGE-PROCESSING TOOLS FOR LOW-COST UAV-BASED LANDSLIDE INVESTIGATIONS. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII-1/C22, 161–166. https://doi.org/10.5194/isprsarchives-XXXVIII-1-C22-161-2011.
Nimmo, J. R. (2013). Porosity and Pore Size Distribution. In Reference Module in Earth Systems and Environmental Sciences. Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.05265-9
Njane, S. N., Tsuda, S., van Marrewijk, B. M., Polder, G., Katayama, K., & Tsuji, H. (2023). Effect of varying UAV height on the precise estimation of potato crop growth. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1233349
Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Government Printing Office.
Peech. (1965). Chemical soil tests (Vol. 960). Cornell Agric.
Prasetya, N. R., Putra, A. N., Rayes, M. L., & Utami, S. R. (2025). Enhancing soil total nitrogen prediction in rice fields using advanced Geo-AI integration of remote sensing data and environmental covariates. Smart Agricultural Technology, 10, 100741. https://doi.org/10.1016/j.atech.2024.100741
Rayes, M. (2006). Deskripsi Profil Tanah di Lapangan. Unit Penerbitan Fakultas Pertanian Universitas Brawijaya.
Ribeiro, A. L. A., Maciel, G. M., Siquieroli, A. C. S., Luz, J. M. Q., Gallis, R. B. de A., Assis, P. H. de S., Catão, H. C. R. M., & Yada, R. Y. (2023). Vegetation Indices for Predicting the Growth and Harvest Rate of Lettuce. Agriculture, 13(5), 1091. https://doi.org/10.3390/agriculture13051091
Richa. (2019). Atasi 306 Hektare Lahan Gagal Panen di Kecamatan Bumiaji Akibat Angin Kencang, Pemkot Batu Siapkan Anggaran Rp 2 Miliar. Malang TIMES. .
Richard, G., Cousin, I., Sillon, J. F., Bruand, A., & Guérif, J. (2001). Effect of compaction on the porosity of a silty soil: influence on unsaturated hydraulic properties. European Journal of Soil Science, 52(1), 49–58. https://doi.org/10.1046/j.1365-2389.2001.00357.x.
Sajarwan, A., Jaya, A., & Banuwa, I. S. (2021). Water Retention and Saturation Degree of Peat Soil in Sebangau Catchment Area, Central Kalimantan. JOURNAL OF TROPICAL SOILS, 26(1), 29–42. https://doi.org/10.5400/jts.2021.v26i1.29-42
Shofiyanti, R. (2011). Teknologi Pesawat Tanpa Awak untuk Pemetaan dan Pemantauan Tanaman dan Lahan Pertanian. Informatika Pertanian, 20(1), 58–64.
Soil Conservation Service. (1984). Soil Survey Laboratory Methods and Procedures for Collecting Soil Samples. Soil Survey Invest.
Soil Survey Staff. (2014). Keys to Soil Taxonomy (12th Edition). USDA-Natural Resources Conservation Service.
Soil Survey Staff. (2022). Keys to Soil Taxonomy, 13th edition. Natural Resources Conservation Service.
Tatsumi, K., & Usami, T. (2024). Plant-level prediction of potato yield using machine learning and unmanned aerial vehicle (UAV) multispectral imagery. Discover Applied Sciences, 6(12), 649. https://doi.org/10.1007/s42452-024-06362-7
Wiratmoko, D. (2015). . PENGGUNAAN CITRA WORLDVIEW-2 UNTUK ESTIMASI PRODUKSI KELAPA SAWIT (Elaeis guineensis Jacq.) SEBAGAI IMPLEMENTASI PERTANIAN PRESISI (Studi di Unit Kebun Adolina, PT. Perkebunan Nusantara IV Kabupaten Serdang Berdagai, Propinsi Sumatera Utara). . Gadjah Mada University.
Xie, Y., Clarke, B. P., Kim, Y. J., Ivey, A. L., Hill, P. S., Shi, Y., & Ren, Y. (2021). Cryo-EM structure of the yeast TREX complex and coordination with the SR-like protein Gbp2. ELife, 10. https://doi.org/10.7554/eLife.65699
Zhang, W., Cheng, L., Xu, R., He, X., Mo, W., & Xu, J. (2023). Assessing Spatial Variation and Driving Factors of Available Phosphorus in a Hilly Area (Gaozhou, South China) Using Modeling Approaches and Digital Soil Mapping. Agriculture, 13(8), 1541. https://doi.org/10.3390/agriculture13081541.