The impact of compost and biochar on the physico-chemical properties of soil and the growth of tomatoes in suboptimal land

Endriani Endriani

Abstract


This study seeks to evaluate the effectiveness of coconut shell biochar and/or Leucaena biocompost as ameliorants in improving soil chemical and physical properties, as well as enhancing plant yields. The goal is to identify the most effective combination of ameliorant formulations that can improve land quality and increase production. The study was carried out over a 10-month period, spanning from March 2024 to December 2024. The research method used a Group Random Design, the treatments studied were: a0: no ameliorant + inorganic fertilizer as recommended;   A1 :  Biochar 15 tons/ha;   A2 :  Lamtoro biocompost 15 tons/ha ;   A3 : Biocompost 5 tons/ha + Biochar  10 tons/ha ;   a4 : Biocompost 10 tons/ha + Biochar 5 tons/ha ; All treatments were repeated 5 times.  The data obtained from this study were subjected to statistical analysis and further evaluated using the Duncan’s New Multiple Range Test (DNMRT). The findings reveal that applying coconut shell biochar and Leucaena compost, whether individually or in combination, markedly enhances the physical properties of the soil. These improvements include reduced bulk density (BD), increased soil organic matter, total porosity, and hydraulic conductivity, as well as better pore distribution and groundwater retention. Furthermore, these treatments resulted in an increase in both the tomato weight per plant and the fresh tomato weight per plot. The most effective combination for maximizing tomato yield was determined to be 10 tons/ha of Leucaena compost combined with 5 tons/ha of coconut shell biochar.


Keywords


biochar; compost; tomato; physico-chemical properties; sub-optimal land

References


Abel S , S Kloh ; N A Wahab; O Masek; M I animu and R T Bachmann. (2021). Effect Of Operating Temperature on Physicochemical Properties of Empty Fruit Bunch Cellulose-Derived Biochar. Journal of Oil Palm Research, 33(4) December 2021:. 643-652 doi:10.21894/jopr.2021.0007

Alotaibi, K.D. and Schoenau, J.J. (2019). Addition of Biochar to a Sandy Desert Soil: Effect on Crop Growth, Water Retention and Selected Properties. Agronomy 2019, 9, 327

Aggelides SM, Londra PA .(2000). Effects of compost produced from town wastes and sewage sludge on the physical properties of a loamy and a clay soil. Bioresour Technol 71:253–259. https://doi.org/ 10. 1016/ S0960- 8524(99) 00074-7

Ampim PAY, Sloan JJ, Cabrera RI, Harp DA, Jaber FH. (2010). Green roof growing substrates: types, ingredients, composition and properties. J Environ Hort 28 (4):244–252. https:// doi.org/10.24266/0738- 2898- 28.4. 244

Annabi M, Houot S, Francou C, Poitrenaud M, Bissonnais YL. (2007). Soil Aggregate Stability Improvement with Urban Composts of Different Maturities. Soil Sci Soc Am J 71:413–423. https:// doi.org/ 10. 2136/ sssaj 2006. 0161

Arthur E, Cornelis WM, Vermang J, De Rocker E. (2011). Amending a loamy sand with three compost types: Impact on soil quality. Soil Use Manag 27:116–123. https://doi.o rg/1 0.1 111/j.1 475-2 743.2010. 00319.x

Bondì, C., Castellini, M., & Iovino, M. (2024). Temporal variability of physical quality of a sandy loam soil amended with compost. Biologia, 0123456789. https://doi.org/10.1007/s11756-024-01637-1

Chen Y, Camps-Arbestain M, Shen Q et al .(2018). The longterm role of organic amendments in building soil nutrient fertility: a meta-analysis and review. Nutr Cycl Agroecosyst

:103–125. https:// doi. org/ 10. 1007/ s10705- 017- 9903-5

Cheng, M.; Wang, H.; Fan, J.; Xiang, Y.; Tang, Z.; Pei, S.; Zeng, H.; Zhang, C.; Dai, Y.; Li, Z.; et al. (2021). Effects of Nitrogen Supply on Tomato Yield, Water Use Efficiency and Fruit Quality: A Glob al Meta-Analysis. Sci. Hortic. 2021, 290, 110553.

Ding Y, Liu Y, Liu S et al., (2016). Biochar to improve soil fertility. A review. Agron Sustain Dev 36:36. https:// doi. org/ 10.1007/ s13593- 016- 0372-z

Dong L, Zhang W, bbXiong Y, Zou J, Huang Q, Xu X, Rben P, Huang G. (2021). Impact of short-term borganic amendments bbincorporation on soil structure and hydrology in semiarid agricultural lands. Int Soil Water Conserv Res in press. https://doi org/10.1016/j.iswcr.2021.10.003

El-Naggar A, Lee SS, Rinklebe J et al., (2019). Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma 337:536–554. https://doi.org/10.1016/j.geoderma. 2018. 09. 034

Endriani and A Kurniawan. (2018). Konservasi Tanah dan Karbon Melalui Pemanfaatan Biochar pada Pertanaman Kedelai. Jurnal Ilmiah Ilmu Terapan Universitas, 2(2):93-106

Feeley KJ, Stroud JT, Perez TM. (2017). Most ‘global’ reviews of species’ responses to climate change are not truly global. Divers Distrib. 2017;23(3):231–4

Food and Agriculture Organization of the United Nations. FAOSTAT Statistical Database. Available online: https://search.library. wisc.edu/catalog/999890171702121 (accessed on 4 May 2024).

Gao, Y.; Lu, Y.; Lin, W.; Tian, J.; Cai, K. (2019). Biochar Suppresses Bacterial Wilt of Tomato by Improving Soil Chemical Properties and Shifting Soil Microbial Community. Microorganisms 2019, 7, 676.

Garbowski T, Bar-Michalczyk D, Charazinska S, Grabowska-Polanowska B, Kowalczyk A, Lochynski P. (2023). An overview of natural soil amendments in agriculture. Soil Tillage Res 225:105462. https:// doi. org/ 10. 1016/j. still. 2022. 105462

Ghorbani M, H Asadib, S Abrishamkeshaa. (2019). Effects of rice husk biochar on selected soil properties and nitrate leaching in loamy sand and clay soil. J International Soil and Water Conservation Research, 7 (2019) 258-265

Głąb T, Zabi´nski A, Sadowska U, Gondek K, Kope´c M, Mierzwa-Hersztek M, Tabor S, Stanek-Tarkowska J. (2020). Fertilization effects of compost produced from maize, sewage sludge and biochar on soil water retention and chemical properties. Soil Tillage Res 197:104493. https:// doi. org/ 10. 1016/j. still. 2019. 104493

Han M, Zhang J, Zhang L, Wang Z . (2023). Effect of biochar addition on crop yield, water and nitrogen use efficiency: A meta-analysis. J Clean Prod 420:138425. https://doi.org/10. 1016/j. jclep ro. 2023. 138425

Hasnain, M.; Chen, J.; Ahmed, N.; Memon, S.; Wang, L.; Wang, Y.; Wang, P. (2020). The Effects of Fertilizer Type and Application Time on Soil Properties, Plant Traits, Yield and Quality of Tomato. Sustainability 2020, 12, 9065.

Huang Y, Tao B, Lal R et al. (2023). A global synthesis of biochar’s sustainability in climate-smart agriculture – Evidence from field and laboratory experiments. Renew Sustain Energy Rev 172:113042. https:// doi. org/ 10. 1016/j. rser. 2022. 113042

Ibrahim, A., & Horton, R. (2021). Biochar and compost amendment impacts on soil water and pore size distribution of a loamy sand soil. In Soil Science Society of America Journal (Vol. 85, Issue 4). https://doi.org/10.1002/saj2.20242

Jeffery S, Abalos D, Prodana M et al. (2017). Biochar boosts tropical but not temperate crop yields. Environ Res Lett 12:053001. https://doi.org/10.1088/1748- 9326/ aa67bd

Larsen J , M R Rashti , M Esfandbod and CChen. (2024). Organic amendments improved soil properties and native plants’ performance in an Australian degraded land. Soil Research 62, SR22252. :1-10 doi:10.1071/SR22252

Lee, J.-M.; Jeong, H.-C.; Gwon, H.-S.; Lee, H.-S.; Park, H.-R.; Kim, G.-S.; Park, D.-G.; Lee, S.-I. (2023). Effects of Biochar on Methane Emissions and Crop Yields in East Asian Paddy Fields: A Regional Scale Meta-Analysis. Sustainability 2023, 15, 9200.

Le Guyader E, Xavier Morvan, Vincent Miconnet, B. Marin, Mohamed Moussa, et al. (2024). Influence of Date Palm-Based Biochar and Compost on Water Retention Properties of Soils with Different Sand Contents. Forests, 2024, 15 (2), pp.304. https://doi.org/10.3390/f15020304ï

Lei, Y.; Xu, L.; Wang, M.; Sun, S.; Yang, Y.; Xu, C. (2024). Effects of Biochar Application on Tomato Yield and Fruit Quality: A Meta-Analysis. Sustainability 2024, 16, 6397. https:// doi.org/10.3390/su16156397

Li, C.; Xiong, Y.; Qu, Z.; Xu, X.; Huang, Q.; Huang, G. (2018). Impact of Biochar Addition on Soil Properties and Water-Fertilizer Productivity of Tomato in Semi-Arid Region of Inner Mongolia, China. Geoderma 2018, 331, 100–108.

Luo, J.; Ke, D.; He, Q. (2021). Dietary Tomato Consumption and the Risk of Prostate Cancer: A Meta-Analysis. Front. Nutr. 2021, 8, 625185

Maškova L, Simmons RW, Deeks LK, De Baets S. (2021). Best Management Practices to Alleviate Deep-Seated Compaction in Asparagus (Asparagus officinalis) Interrows (UK). Soil Tillage Res 213:105124. https :// doi.org/10.1016/j.still. 2021.105124

Paradelo R, Basanta R, Barral MT. (2019). Water-holding capacity and plant growth in compost-based substrates modified with polyacrylamide, guar gum or bentonite. Sci Hortic 243:344–349. https:// doi. org/ 10. 1016/j. scien ta. 2018. 08. 046

Rattanavipanon, W.; Nithiphongwarakul, C.; Sirisuwansith, P.; Chaiyasothi, T.; et al.,. (2021). Effect of Tomato, Lycopene and Related Products on Blood Pressure: A Systematic Review and Network Meta-Analysis. Phytomedicine 2021, 88, 153512

Rosa, D.; Petruccelli, V.; Iacobbi, M.C.; Brasili, E.; Badiali, C.; Pasqua, G.; Di Palma, L. (2024). Functionalized Biochar from Waste as a Slow-Release Nutrient Source: Application on Tomato Plants. Heliyon 2024, 10, e29455.

Samui, I.; Skalicky, M.; Sarkar, S.; Brahmachari, K.; Sau, S.; Ray, K.; Hossain, A.; ….; Bell, R.W. (2020). Yield Response, Nutritional Quality and Water Productivity of Tomato (Solanum lycopersicum L.) Are Influenced by Drip Irrigation and Straw Mulch in the Coastal Saline Ecosystem of Ganges Delta, India. Sustainability 2020, 12, 6779.

Sani, M.N.H.; Hasan, M.; Uddain, J.; Subramaniam, S.(2020). Impact of Application of Trichoderma and Biochar on Growth, Productivity and Nutritional Quality of Tomato under Reduced N-P-K Fertilization. Ann. Agric. Sci. 2020, 65, 107–115.

Sarker TC, Zotti M, Fang Y, Giannino F, Mazzoleni S, Bonanomi G, Cai Y, Chang SX. (2022). Soil Aggregation in Relation to Organic Amendment: a Synthesis. J Soil Sci Plant Nutr 22:2481–2502. https:// doi. org/ 10. 1007/ s42729- 022- 00822-y

Schmid CJ, Murphy JA, Murphy S .(2017). Effect of tillage and compost amendment on turfgrass establishment on a compacted sandy loam. J Soil Water Conserv 72(1):55–64. https://doi. org/10.2489/jswc.72.1.55

Sharma P, V Abrol, V Sharma, S Chaddha, Ch. S Rao, A.Q. Ganie, D I Hefft, MA. et al. (2021). Effectiveness of biochar and compost on improving soil hydro-physical properties, crop yield and monetary returns in Inceptisol subtropics, Saudi Journal of Biological Sciences, 28 (12): 7539-7549 , 2021 https://doi.org/10.1016/j.sjbs.2021.09.043

Singh Yadav SP, Bhandari S, Bhatta D et al. (2023). Biochar application: a sustainable approach to improve soil health. J Agric Food Res 11:100498. https:// doi. org/ 10. 1016/j.jafr. 2023. 100498

Sukartono, Dewi, R. A. S., Bakti, A. A., & Kusumo, B. H. (2023). Dynamic of Change in Soil Physical Properties and SoyBean Growth through The Application of Biochar on Lombok Vertisols. Jurnal Biologi Tropis, 23(1), 237–245. https://doi.org/10.29303/jbt.v23i1.4590

Thapa, R.B.; Coupal, R.H.; Dangi, M.B.; Stahl, P.D. 2024. An Assessment of Plant Growth and Soil Properties Using Coal Char and Biochar as a Soil Amendment. Agronomy 2024, 14, 320. doi:10.3390/agronomy14020320:1-13

Wallace D, Almond P, Carrick S, Thomas S (2019) Targeting changes in soil porosity through modification of compost size and application rate. Soil Res 58(3):268–276. https:// doi. org/10.1071/SR191 70

Wang D, Lin JY, Sayre JM, Schmidt R, Fonte SJ, Rodrigues JLM, Scow KM (2022) Compost amendment maintains soil structure and carbon storage by increasing available carbon and microbial biomass in agricultural soil – A six-year field study. Geoderma 427:116117. https:// doi. org/ 10. 1016/j. geode rma.2022. 116117

Wang, J.; Zhang, B.; Wang, J.; Zhang, G.; Yue, Z.; Hu, L.; Yu, J.; Liu, Z. (2024). Effects of Different Agricultural Waste Composts on Cabbage Yield and Rhizosphere Environment. Agronomy 2024, 14, 413. doi:10.3390/agronomy14030413

Wiskandar and Ajidirman. (2024). Effect of biochar and Tithonia compost on physical properties of postcoal mining soil. Journal of Degraded and Mining Lands Management 11(3):5829-5838, doi:10.15243/jdmlm.2024.113.5929

Wu, Z.; Zhang, X.; Dong, Y.; Li, B.; Xiong, Z. (2019). Biochar Amendment Reduced Greenhouse Gas Intensities in the Rice-Wheat Rotation System: Six-Year Field Observation and Meta-Analysis. Agric. For. Meteorol. 2019, 278, 107625.

Yang M, Chen L, Wang J et al. (2023). Circular economy strategies for combating climate change and other environmental issues. Environ Chem Lett 21:55–80

Ye L, Camps-Arbestain M, Shen Q et al. (2020). Biochar effects on crop yields with and without fertilizer: A meta-analysis of field studies using separate controls. Soil Use Manag 36:2–18

Zhang, P.; Li, M.; Fu, Q.; Singh, V.P.; Du, C.; Liu, D.; Li, T.; Yang, A. (2024). Dynamic Regulation of the Irrigation–Nitrogen–Biochar Nexus for the Synergy of Yield, Quality, Carbon Emission and Resource Use Efficiency in Tomato. J. Integr. Agric. 2024, 23, 680–697.




DOI: http://dx.doi.org/10.5400/jts.2025.v30i2.%25p

Refbacks

  • There are currently no refbacks.


INDEXING SITE

University of OxfordColumbia University LibraryStanford Crossref EBSCO

DOAJ


Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.