The Influence of Compost and Biochar on the Physico-Chemical Properties of Soil and the Growth of Tomatoes in Sub-Optimal Land

Endriani Endriani, Asmadi Sa’ad, Diah Listyarini

Abstract


This study seeks to evaluate the effectiveness of coconut shell biochar (CB)  and/or Leucaena compost (LC) as ameliorants in improving soil chemical and physical properties, as well as enhancing tomato yields. The goal is to identify the most effective combination of ameliorant formulations that can improve land quality and increase yield of tomato. The study was carried out over a 10-month period, spanning from March 2024 to December 2024. The research method used a Group Random Design, the treatments studied were: A0: no ameliorant + inorganic fertilizer as recommended;   A1 :  CB 15 Mg ha-1;   A2 :  LC 15 Mg ha-1;   A3 : LC 5 Mg ha-1 + CB  10 Mg ha-1;   A4 : LC 10 Mg ha-1 + CB 5 Mg ha-1. All treatments were repeated 5 times.  The data obtained from this study were subjected to statistical analysis and further evaluated using the Duncan’s New Multiple Range Test (DNMRT). The findings reveal that applying coconut shell biochar and Leucaena compost, whether individually or in combination, markedly enhances the physical properties of the soil. These improvements include reduced bulk density (BD), increased soil organic matter SOM), total porosity (TP), and hydraulic conductivity (HC), as well as better pore distribution and water retention. Furthermore, these treatments resulted in an increase in both the tomato weight per plant and the fresh tomato weight per plot. The most effective combination for maximizing tomato yield was determined to be 10 Mg ha-1 of LC combined with 5 Mg ha-1 of CB.

Keywords


biochar; compost; tomato; physico-chemical properties; sub-optimal land

Full Text:

PDF

References


Ainiya, M., Fadil, M., & Despita, R. (2019). Peningkatan Pertumbuhan dan Hasil Jagung Manis dengan Pemanfaatan Trichokompos dan POC Daun Lamtoro. Agrotechnology Research Journal, 3(2), 69–74. https://doi.org/10.20961/agrotechresj.v3i2.31910

Alotaibi, K. D., & Schoenau, J. J. (2019). Addition of biochar to a sandy desert soil: Effect on crop growth,water retention and selected properties. Agronomy, 9(6), 5–7. https://doi.org/10.3390/agronomy9060327

Ampim, P. A. Y., Sloan, J. J., Cabrera, R. I., Harp, D. A., & Jaber, F. H. (2010). Green Roof Growing Substrates: Types, Ingredients, Composition and Properties. Journal of Environmental Horticulture, 28(4), 244–252. https://doi.org/10.24266/0738-2898-28.4.244

Annabi, M., Le Bissonnais, Y., Le Villio-Poitrenaud, M., & Houot, S. (2011). Improvement of soil aggregate stability by repeated applications of organic amendments to a cultivated silty loam soil. Agriculture, Ecosystems and Environment, 144(1), 382–389. https://doi.org/10.1016/J.AGEE.2011.07.005

Anwar H M; T B Prasetyo; Yulnafatmawita. (2024). Peranan Biochar dan Kompos dalam Meningkatkan Retensi Air dan Produksi Jagung Manis (Zea mays L. var. saccharata) pada Tanah Bertekstur Kasar. Jurnal Agrikultura, 35(2), 238–249. https://jurnal.unpad.ac.id/agrikultura/article/view/53995/23393

Arthur, E., Cornelis, W. M., Vermang, J., & De Rocker, E. (2011). Amending a loamy sand with three compost types: impact on soil quality. Soil Use and Management, 27(1), 116–123. https://doi.org/https://doi.org/10.1111/j.1475-2743.2010.00319.x

Ayito, E. O., John, K., Iren, O. B., John, N. M., Mngadi, S., Heung, B., Abbey, Lord, Agyeman, P. C., & Moodley, R. (2023). Synergistic effects of biochar and poultry manure on soil and cucumber (Cucumis sativus) performance: A case study from the southeastern Nigeria. Soil Science Annual, 74(4), 1–16. https://doi.org/10.37501/soilsa/183903

Bondì, C., Castellini, M., & Iovino, M. (2024). Temporal variability of physical quality of a sandy loam soil amended with compost. Biologia, 0123456789. https://doi.org/10.1007/s11756-024-01637-1

Bramarambika et al. (2024). The Effect of Coconut Shell Biochar on the Growth and Yield of Chilli (Capsicum annum L.) in Acidic Alfisols Soil. Journal of Advances in Biology & Biotechnology, 27(7), 203–211. https://doi.org/OI: 10.9734/jabb/2024/v27i7980

Cahyono et al. (2020). Effect of Compost on Soil Properties and Yield of Pineapple ( Anana Cumosus L. MERR.) on Red Acid Soil, Lampung, Indonesia. International Journal of GEOMATE, 19(76), 33–39. https://doi.org/ttps://doi.org/10.21660/2020.76.87174

Calcan, S. I., Pârvulescu, O. C., Ion, V. A., Rãducanu, C. E., Bãdulescu, L., Madjar, R., Dobre, T., Egri, D., Mo, A., Iliescu, L. M., & Jerca, I. O. (2022). Effects of Biochar on Soil Properties and Tomato Growth. Agronomy, 12(8), 25–27. https://doi.org/10.3390/agronomy12081824

Chen, X., Li, L., Li, X., Kang, J., Xiang, X., Shi, H., & Ren, X. (2023). Effect of Biochar on Soil-Water Characteristics of Soils: A Pore-Scale Study. Water (Switzerland), 15(10), 1–16. https://doi.org/10.3390/w15101909

Chen, Y., Gel, Y. R., Lyubchich, V., & Nezafati, K. (2018). Snowboot: Bootstrap Methods for Network Inference. The R Journal, 10(2), 95–113. https://journal.r-project.org/archive/2018/RJ-2018-056/index.html

Cheng M, H Wang, Junliang F, Y Xiang, Z Tang, S. P. H. (2021). Effects of nitrogen supply on tomato yield, water use efficiency and fruit quality: A global meta-analysis. Scientia Horticulturae, 290(15 Desember 2021). https://doi.org/https://doi.org/10.1016/j.scienta.2021.110553

Ding, Y., Liu, Y., Liu, S., Li, Z., Tan, X., Huang, X., Zeng, G., Zhou, L., & Zheng, B. (2016). Biochar to improve soil fertility. A review. Agronomy for Sustainable Development, 36(2). https://doi.org/10.1007/s13593-016-0372-z

Diri, K. H., & Kedoneojo, A. T. (2024). Evaluating the impact of poultry manure variants and swine manure on soil chemical properties and growth of maize (Zea mays). Asian Journal of Agriculture, 8(1), 1–9. https://doi.org/10.13057/asianjagric/g080101

Dong, L., Zhang, W., Xiong, Y., Zou, J., Huang, Q., Xu, X., Ren, P., & Huang, G. (2022). Impact of short-term organic amendments incorporation on soil structure and hydrology in semiarid agricultural lands. International Soil and Water Conservation Research, 10(3), 457–469. https://doi.org/10.1016/j.iswcr.2021.10.003

El-Naggar, A., Lee, S. S., Rinklebe, J., Farooq, M., Song, H., Sarmah, A. K., Zimmerman, A. R., Ahmad, M., Shaheen, S. M., & Ok, Y. S. (2019). Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma, 337, 536–554. https://doi.org/10.1016/J.GEODERMA.2018.09.034

Endriani & Agus Kurniawan. (2018). Konservasi Tanah dan Karbon Melalui Pemanfaatan Biochar Pada Pertanaman Kedelai. Jurnal Ilmiah Ilmu Terapan Universitas Jambi, 2(2), 93–106. https://doi.org/https://doi.org/10.22437/jiituj.v2i2.5980

FAOSTAT. (2023). FAO STAT Statistik Database Commodities by country. FAO of United Nation, 1–6. https://www.fao.org/faostat/en/#rankings/commodities_by_country

Feeley, K. J., Stroud, J. T., & Perez, T. M. (2017). Most ‘global’ reviews of species’ responses to climate change are not truly global. Diversity and Distributions, 23(3), 231–234. https://doi.org/10.1111/ddi.12517

Gao, S., DeLuca, T. H., & Cleveland, C. C. (2019). Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: A meta-analysis. Science of the Total Environment, 654, 463–472. https://doi.org/10.1016/J.SCITOTENV.2018.11.124

Garbowski, T., Bar-Michalczyk, D., Charaziñska, S., Grabowska-Polanowska, B., Kowalczyk, A., & Lochyñski, P. (2023). An overview of natural soil amendments in agriculture. Soil and Tillage Research, 225(January), 1–10. https://doi.org/10.1016/j.still.2022.105462

Ghorbani, M., Asadi, H., & Abrishamkesh, S. (2019). Effects of rice husk biochar on selected soil properties and nitrate leaching in loamy sand and clay soil. International Soil and Water Conservation Research, 7(3), 258–265. https://doi.org/10.1016/J.ISWCR.2019.05.005

G³¹b, T., ¯abiñski, A., Sadowska, U., Gondek, K., Kopeæ, M., Mierzwa-Hersztek, M., Tabor, S., & Stanek-Tarkowska, J. (2020). Fertilization effects of compost produced from maize, sewage sludge and biochar on soil water retention and chemical properties. Soil and Tillage Research, 197(March), 1–11. https://doi.org/10.1016/j.still.2019.104493

Han, M., Zhang, J., Zhang, L., & Wang, Z. (2023). Effect of biochar addition on crop yield, water and nitrogen use efficiency: A meta-analysis. Journal of Cleaner Production, 420, 138425. https://doi.org/10.1016/J.JCLEPRO.2023.138425

Hasnain, M., Chen, J., Ahmed, N., Memon, S., Wang, L., Wang, Y., & Wang, P. (2020). The effects of fertilizer type and application time on soil properties, plant traits, yield and quality of tomato. Sustainability (Switzerland), 12(21), 1–14. https://doi.org/10.3390/su12219065

Huang, K., Zhang, J., Tang, G., Bao, D., Wang, T., & Kong, D. (2023). Impacts and mechanisms of biochar on soil microorganisms. Plant, Soil and Environment, 69(2), 45–54. https://doi.org/10.17221/348/2022-PSE

Ibrahim, A., & Horton, R. (2021). Biochar and compost amendment impacts on soil water and pore size distribution of a loamy sand soil. In Soil Science Society of America Journal (Vol. 85, Issue 4). https://doi.org/10.1002/saj2.20242

Jabborova, D., Annapurna, K., Azimov, A., Tyagi, S., Pengani, K. R., Sharma, P., Vikram, K. V., Poczai, P., Nasif, O., Ansari, M. J., & Sayyed, R. Z. (2022). Co-inoculation of biochar and arbuscular mycorrhizae for growth promotion and nutrient fortification in soybean under drought conditions. Frontiers in Plant Science, 13(July), 1–9. https://doi.org/10.3389/fpls.2022.947547

Jeffery, S., Abalos, D., Prodana, M., Bastos, A. C., Van Groenigen, J. W., Hungate, B. A., & Verheijen, F. (2017). Biochar boosts tropical but not temperate crop yields. Environmental Research Letters, 12(5). https://doi.org/10.1088/1748-9326/aa67bd

Larsen, J., Rezaei Rashti, M., Esfandbod, M., & Chen, C. (2024). Organic amendments improved soil properties and native plants’ performance in an Australian degraded land. Soil Research , 62(4). https://doi.org/10.1071/SR22252

Le Guyader, E., Morvan, X., Miconnet, V., Marin, B., Moussa, M., Intrigliolo, D. S., Delgado-Iniesta, J., Girods, P., Fontana, S., Sbih, M., Marin, B., Delgado-Iniesta, M. J., Fontana, S., Boumaraf, B., Tirichine, A., Kavvadias, V., & Gommeaux, M. (2024). Influence of Date Palm-Based Biochar and Compost on Water Retention Properties of Soils with Different Sand Contents Date Palm-Based Biochar and Compost on Water Retention Properties of Soils with Different Sand Contents Influence of Date Palm-Based Bioch. Forest, 15(2), 304. https://doi.org/10.3390/f15020304ï

Lee, J. M., Jeong, H. C., Gwon, H. S., Lee, H. S., Park, H. R., Kim, G. S., Park, D. G., & Lee, S. Il. (2023). Effects of Biochar on Methane Emissions and Crop Yields in East Asian Paddy Fields: A Regional Scale Meta-Analysis. Sustainability (Switzerland), 15(12), 19–21. https://doi.org/10.3390/su15129200

Lei, Y., Xu, L., Wang, M., Sun, S., Yang, Y., & Xu, C. (2024). Effects of Biochar Application on Tomato Yield and Fruit Quality: A Meta-Analysis. Sustainability (Switzerland), 16(15), 1–19. https://doi.org/10.3390/su16156397

Li, S., Zhu, X., Chen, Y., & Liu, D. (2021). PAsso: an R Package for Assessing Partial Association between Ordinal Variables. The R Journal, 13(2), 239–252. https://journal.r-project.org/archive/2021/RJ-2021-088/index.html

Liu, X., Ren, X., Dong, J., Wang, B., Gao, J., Wang, R., Yao, J., & Cao, W. (2023). Preparation and physicochemical properties of biochar from the pyrolysis of pruning waste of typical fruit tree in north China. BioResources, 18, 8536–8556. https://doi.org/10.15376/biores.18.4.8536-8556

Luo, J., Ke, D. and, & He, Q. (2021). Dietary Tomato Consumption and the Risk of Prostate Cancer: A Meta-Analysis. Frontiers in Nutrition, 8(May). https://doi.org/10.3389/fnut.2021.625185

Mašková, L., Simmons, R. W., Deeks, L. K., & De Baets, S. (2021). Best Management Practices to Alleviate Deep-Seated Compaction in Asparagus (Asparagus officinalis) Interrows (UK). Soil and Tillage Research, 213(May). https://doi.org/10.1016/j.still.2021.105124

McGrath, D., Henry, J., M, R., & W, C. (2020). Compost improves soil properties and tree establishment along highway roadsides. Urban Forestry & Urban Greening, 55(November 2020). https://doi.org/https://doi.org/10.1016/j.ufug.2020.126851.

Mensah, A. K., & Frimpong, K. A. (2018a). Biochar and/or Compost Applications Improve Soil Properties, Growth, and Yield of Maize Grown in Acidic Rainforest and Coastal Savannah Soils in Ghana. International Journal of Agronomy, 2018. https://doi.org/10.1155/2018/6837404.

Mensah, A. K., & Frimpong, K. A. (2018b). Biochar and/or Compost Applications Improve Soil Properties, Growth, and Yield of Maize Grown in Acidic Rainforest and Coastal Savannah Soils in Ghana. International Journal of Agronomy, 2018. https://doi.org/10.1155/2018/6837404.

Olaifa K.A , Olaitan, A.O, Agbeja A.O, Adesokan F. B , Sulaiman , O. N and Onifade, A. . (2021). Influence of Different Compost on The Early Growth of Detarium microcarpum Guill & perr Seedling. Journal of Research in Forestry, Wildlife & Environment, 13(1), 67–74.

Paradelo, R., Basanta, R., & Barral, M. T. (2019). Water-holding capacity and plant growth in compost-based substrates modified with polyacrylamide, guar gum or bentonite. Scientia Horticulturae, 243, 344–349. https://doi.org/10.1016/J.SCIENTA.2018.08.046.

Rattanavipanon, W., Nithiphongwarakul, C., Sirisuwansith, P., Chaiyasothi, T., Thakkinstian, A., Nathisuwan, S., & Pathomwichaiwat, T. (2021). Effect of tomato, lycopene and related products on blood pressure: A systematic review and network meta-analysis. Phytomedicine, 88, 153512. https://doi.org/10.1016/J.PHYMED.2021.153512.

Razzaghi, F., Obour, P. B., & Arthur, E. (2020). Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma, 361, 114055. https://doi.org/10.1016/J.GEODERMA.2019.114055.

Rosa, D., Petruccelli, V., Iacobbi, M. C., Brasili, E., Badiali, C., Pasqua, G., & Di Palma, L. (2024). Functionalized biochar from waste as a slow-release nutrient source: Application on tomato plants. Heliyon, 10(8), e29455. https://doi.org/10.1016/J.HELIYON.2024.E29455.

Rosland Abel, S. E., Kheang Loh, S., Abdul Wahab, N., Masek, O., Tanimu, M. I., & Bachmann, R. T. (2021). Effect of Operating Temperature on Physicochemical Properties of Empty Fruit Bunch Cellulose-Derived Biochar. Journal of Oil Palm Research, 33(4), 643–652. https://doi.org/10.21894/jopr.2021.0007.

Samui, I., Skalicky, M., Sarkar, S., Brahmachari, K., Sau, S., Ray, K., Hossain, A., Ghosh, A., Kumar, M., Bell, R. W., Mainuddin, M., Brestic, M., Liu, L., Saneoka, H., Raza, M. A., Erman, M., & Sabagh, A. E. L. (2020). Yield response, nutritional quality and water productivity of tomato (Solanum lycopersicum L.) are influenced by drip irrigation and straw mulch in the coastal saline ecosystem of Ganges delta, India. Sustainability (Switzerland), 12(17). https://doi.org/10.3390/SU12176779.

Sani, J. E., Moses, G., & Musa, S. (2023). Physicochemical evaluation of coconut shell biochar remediation effect on crude oil contaminated soil. Cogent Engineering, 10(2). https://doi.org/10.1080/23311916.2023.2269659.

Sari, W. K., & Malik, P. A. (2023). The effects of application of biochar from oil palm empty fruit bunches on chemical properties of ultisols and the growth of cacao seedlings. Kultivasi, 22(2), 157–167. https://doi.org/10.24198/kultivasi.v22i2.46525.

Sayara, T., Basheer-Salimia, R., Hawamde, F., & Sánchez, A. (2020). Recycling of organic wastes through composting: Process performance and compost application in agriculture. Agronomy, 10(11). https://doi.org/10.3390/agronomy10111838.

Schmid, C. J., Murphy, J. A., & Murphy, S. (2017). Effect of tillage and compost amendment on turfgrass establishment on a compacted sandy loam. Journal of Soil and Water Conservation, 72(1), 55–64. https://doi.org/10.2489/jswc.72.1.55.

Sharma, P., Abrol, V., Sharma, V., Chaddha, S., Srinivasa Rao, C., Ganie, A. Q., Ingo Hefft, D., El-Sheikh, M. A., & Mansoor, S. (2021). Effectiveness of biochar and compost on improving soil hydro-physical properties, crop yield and monetary returns in inceptisol subtropics. Saudi Journal of Biological Sciences, 28(12), 7539–7549. https://doi.org/10.1016/j.sjbs.2021.09.043.

Singh Yadav, S. P., Bhandari, S., Bhatta, D., Poudel, A., Bhattarai, S., Yadav, P., Ghimire, N., Paudel, P., Paudel, P., Shrestha, J., & Oli, B. (2023). Biochar application: A sustainable approach to improve soil health. Journal of Agriculture and Food Research, 11, 100498. https://doi.org/10.1016/J.JAFR.2023.100498.

Siregar, A. P., & Wijayanto, N. (2024). The Response of giving Gamal, Calliandra, and Lamtoro leaves compost fertilizer to Stevia plant (Stevia rebaudiana Bertoni) growth. IOP Conference Series: Earth and Environmental Science, 1315(1). https://doi.org/10.1088/1755-1315/1315/1/012008.

Situ, G., Zhao, Y., Zhang, L., Yang, X., Chen, D., Li, S., Wu, Q., Xu, Q., Chen, J., & Qin, H. (2022). Linking the chemical nature of soil organic carbon and biological binding agent in aggregates to soil aggregate stability following biochar amendment in a rice paddy. Science of the Total Environment, 847(November), 1–11. https://doi.org/10.1016/j.scitotenv.2022.157460.

Sukartono, Dewi, R. A. S., Bakti, A. A., & Kusumo, B. H. (2023). Dynamic of Change in Soil Physical Properties and SoyBean Growth through The Application of Biochar on Lombok Vertisols. Jurnal Biologi Tropis, 23(1), 237–245. https://doi.org/10.29303/jbt.v23i1.4590.

Thapa, R. B., Coupal, R. H., Dangi, M. B., & Stahl, P. D. (2024). An Assessment of Plant Growth and Soil Properties Using Coal Char and Biochar as a Soil Amendment. Agronomy, 14(2), 1–13. https://doi.org/10.3390/agronomy14020320.

Wallace, D., Almond, P., Carrick, S., & Thomas, S. (2020). Targeting changes in soil porosity through modification of compost size and application rate. Soil Research, 58(3), 268–276. https://doi.org/10.1071/SR19170.

Wang, D., Lin, J. Y., Sayre, J. M., Schmidt, R., Fonte, S. J., Rodrigues, J. L. M., & Scow, K. M. (2022). Compost amendment maintains soil structure and carbon storage by increasing available carbon and microbial biomass in agricultural soil – A six-year field study. Geoderma, 427, 116117. https://doi.org/10.1016/J.GEODERMA.2022.116117.

Wang, J., Zhang, B., Wang, J., Zhang, G., Yue, Z., Hu, L., Yu, J., & Liu, Z. (2024). Effects of Different Agricultural Waste Composts on Cabbage Yield and Rhizosphere Environment. Agronomy, 14(3), 1–18. https://doi.org/10.3390/agronomy14030413.

Wang, L., Leghari, S. J., Wu, J., Wang, N., Pang, M., & Jin, L. (2023). Interactive effects of biochar and chemical fertilizer on water and nitrogen dynamics, soil properties and maize yield under different irrigation methods. Frontiers in Plant Science, 14(September), 1–15. https://doi.org/10.3389/fpls.2023.1230023.

Wiskandar, & Ajidirman. (2024). Effect of biochar and Tithonia compost on physical properties of post-coal mining soil. Journal of Degraded and Mining Lands Management, 11(3), 5829–5838. https://doi.org/10.15243/jdmlm.2024.113.5829.

Wu, Z., Zhang, X., Dong, Y., Li, B., & Xiong, Z. (2019). Biochar amendment reduced greenhouse gas intensities in the rice-wheat rotation system: six-year field observation and meta-analysis. Agricultural and Forest Meteorology, 278, 107625. https://doi.org/10.1016/J.AGRFORMET.2019.107625.

Yang, M., Chen, L., Wang, J., Msigwa, G., Osman, A. I., Fawzy, S., Rooney, D. W., & Yap, P. S. (2023). Circular economy strategies for combating climate change and other environmental issues. Environmental Chemistry Letters, 21(1), 55–80. https://doi.org/10.1007/s10311-022-01499-6.

Ye, L. , Arbestain, M.C., Shen, Q., Lehmann, J., Singh, B., Sabir, M. (2020). Biochar effects on crop yields with and without fertilizer: A meta analysis of field studies using separate controls.., 2019. Soil Use Manag. 36(1),. https://doi.org/https://doi.org/10.1111/sum.12546.

Zhang, P., Li, M., Fu, Q., Singh, V. P., Du, C., Liu, D., Li, T., & Yang, A. (2024). Dynamic regulation of the irrigation–nitrogen–biochar nexus for the synergy of yield, quality, carbon emission and resource use efficiency in tomato. Journal of Integrative Agriculture, 23(2), 680–697. https://doi.org/10.1016/J.JIA.2023.06.006.




DOI: http://dx.doi.org/10.5400/jts.2025.v30i2.85-95

Refbacks

  • There are currently no refbacks.


INDEXING SITE

University of OxfordColumbia University LibraryStanford Crossref EBSCO

DOAJ


Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.