Effectiveness of Inorganic Fertilizer and Biofertilizer Application on Maize Yield and Fertilizer Use Efficiency on Inceptisol from West Java

Jati Purwani, Nurjaya Nurjaya


The study about the effectiveness of inorganic fertilizer and bio-fertilizer application on maize yield and fertilizer use efficiency has been carried out in the greenhouse using Inceptisol from Dukuh Village, Cibungbulang District, Bogor Regency. Inorganic fertilizers used were Urea, SP36 and KCl, the biofertilizer used consisted of Azospirillum sp., Azotobacter sp., Bacillus sp., and Lactobacillus sp.. The study was arranged in a Randomized Block Design consisting of seven treatments and six replications. The treatments consisted of various dosages of inorganic fertilizers combined with bio-fertilizer, namely 1) Control (without fertilizer), 2) 100% recommended NPK level, 3) Biofertilizer, 4) 25% recommended NPK level+Biofertilizer, 5) 50% recommended NPK level+Biofertilizer, 6) 75% recommended NPK level + Biofertilizer, 7) 100% recommended NPK level + Biofertilizer. The results showed that the application of inorganic NPK ferttilizers and biofertilizer on maize cultivation on Inceptisol from Dukuh Village, Cibungbulang District, Bogor Regency resulted in an increase of maize yield compared to the recommended level of inorganic fertilizers (100% NPK). The treatment of NPK (50% recommended level)+Biofertilizer resulted in the highest biomass dry weight, yield of corn and value of RAE (Relative Agronomic Effectiveness). The shoot dry weight was 138.09 g pot-1, corn yield was 190.87 g pot-1, and RAE value was 113.44%. The optimum doses of NPK fertilizers were 200 kg Urea ha-1, 60 kg SP-36 ha-1 and 45 kg KCl ha-1 combined with 4 L ha-1 biofertilizer.


Biofertilizer; corn yield; fertilizer use efficiency; inorganic fertilizer; Inceptisols

Full Text:



Bais HP, TL Weir, LG Perry, S Gilroy and JM Vivanco. 2006. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57: 233-266.

Beyranvand H, A Farnia, SH Nakhjavan and M Shaban. 2013. The response of yield and yield components of maize (Zea mays L.) to different biofertilizers. Int J Adv Biol Biomed Res 1: 1068-1077.

Bhardwaj D, MW Ansari, RK Sahoo and N Tuteja. 2014. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories 13: 1-10.

Bhattacharya O and KK Jain. 2000. Phosphorus solubilizing biofertilizers in the whirlpool of rock phosphate challenges and opportunities. Fertilizer News 459: 45-49.

Farnia A and V Ashjardi. 2015. Effect of nitrogen biofertilizers on yield and yield components of different maize (Zea mays L.) cultivars. Int J Life Sci 9: 117-121.

Isgitani M, S Kabirun and SA Siradz. 2005. Pengaruh inokulasi bakteri pelarut fosfat terhadap pertumbuhan shorghum pada berbagai kandungan P tanah. J Ilmu Tanah dan Lingkungan 5: 48-54.

Kasno A, D Setyorini and E Tuberkih. 2006. Pengaruh pemupukan fosfat terhadap produktivitas tanah inceptisol dan ultisol. J Ilmu-IlmuPertanian Indonesia 8: 91-98. (in Indonesian).

Kouchebagh SB, B Mirshekari and F Farahvash. 2012. Improvement of corn yield by seed biofertilization and urea application. World Appl Sci J 16: 1239-1242.

Machay AD, JK Syers and PEH Gregg. 1984. Ability of chemical extraction procedures to assess the agronomic effectiveness of phosphate rock material. New Zeal J Agr Res 27: 219-230.

Mahato S and S Neupane. 2017. Comparative Study of impact of Azotobacter and Trichoderma with other fertilizers on maize growth. J Maize Res Dev 3: 1-16

Malusá E and N Vassilev. 2014. A contribution to set a legal framework for biofertilisers. Appl Microbiol Biotech 98: 6599-6607. https://doi.org/10.1007/s00253-014-5828-Y

Matsumoto H, Y Yamamoto and B Ezaki. 2003. Recent Advances in The Physiological and Molecular Mechanism of Al toxicity and tolerance in higher plants. Adv Plant Physiol 5:29-74.

McCarty SC, DS Chauhan, AD McCarty, KM Tripathi, T Selvan and SK Dubey. 2017. Effect of Azotobacter and Phosphobacteria on yield of wheat (Triticum aestivum). Vegetos-An Int J Plant Res 30: 1-4.

Naserirad H, A Soleymanifard and R Naseri. 2011. Effect of integrated application of bio-fertilizer on grain yield, yield components and associated traits of maize cultivars. Am-Eurasian J Agric Environ Sci 10: 271-277.

Ogola JBO, TR Wheeler and PM Harris.2002. Effects of nitrogen and irrigation on water use of maize crops. Field Crop Res 8: 105-117.

Purwaningsih S. 2003. Isolasi, populasi dan karakterisasi bakteri pelarut fosfat pada tanah dari Taman Nasional Bogani Nani Wartabone, Sulawesi Utara. Biologi 3: 22- 31. (in Indonesian).

Rahman MA, SH Lee, HC Ji, AH Kabir, CS Jones and KW Lee. 2018. Importance of mineral nutrition for mitigating aluminum toxicity in plants on acidic soils: current status and opportunities. Int J Mol Sci 19: 3073-3090. https: //doi.org/10.3390/ijms19103073

Rahmansyah M, S Antonius and N Sulistinah. 2009. Phosphatase and urease instability caused by pesticides present in soil improved by grounded rice straw. ARPN J Agric Biol Sci 4: 56-62.

Rokhzadi A, A Asgharzadeh, F Darvish, NM Ghorban and M Eslam. 2008. Influence of plant growth-promoting rhizobacteria on dry matter accumulation and yield of chickpea (Cicer arietinum L.) under field conditions. Am Eurasian J Agric Environ Sci 3: 253-257.

Santosa E. 2009. Aktivitas beberapa isolat bakteri pelarut fosfat pada berbagai kadar C organik di tanah ultisol. Dalam: Prosiding Seminar dan Lokakarya Nasional Inovasi Sumberdaya Lahan. Teknologi Konservasi, Pemupukan, dan Biologi Tanah. Buku II: 1-14. Bogor: Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian. (in Indonesian).

Simanungkalit RDM. 2001. Aplikasi Pupuk Hayati dan Pupuk Kimia: Suatu Pendekatan Terpadu. Buletin Agro Bio 4: 56-61. (in Indonesian).

Simanungkalit RDM, DA Suriadikarta, R Saraswati, D Setyorini and W Hartatik. 2006. Pupuk Hayati. Badan Penelitian dan Pengembangan Pertanian. Bogor. (in Indonesian).

Sivamurugan AP, R Ravikesavan, AK Singh and SL Jat. 2018. Effect of different levels of P and liquid biofertilizers on growth, yield attributes and yield of maize. Chem Sci Rev Lett 7: 520-523.

Stamford NP, SS Junior, CERS Santos, ADS Freitas, CMA Santos, TMS Arnaud and HR Soare. 2014. Yield of grape (Vitis labrusca cv. Isabel) and soil nutrients availability affected by biofertilizers with diazotrophic bacteria and fungi chitosan. Aust J Crop Sci 8: 301-306.

Wani SA, S Chand, MA Wani, M Ramzan and KR Hakeem. 2016-. Azotobacterchroococcum–A Potential Biofertilizer in Agriculture: An Overview. In: K Hakeem, J Akhtar and M Sabir (eds). Soil Science: Agricultural and Environmental Prospectives. Springer, Cham, pp: 333-348. https://doi.org/10.1007/978-3-319-34451-5_15

Wong WS, SN Tan, L Ge, X Chen and JWH Yong. 2015. The importance of phytohormones and microbes in biofertilizers. In: DK Maheshwari (Ed). Bacterial Metabolites in Sustainable Agroecosystem. Springer, pp. 105-158. https://doi.org/10.1007/978-3-319-24654-3.

Wu SC, ZH Cao, ZG Li, KC Cheung and MH Wong. 2005. Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125: 155-166.

Yousefi A A, Khavazi K, A Moezi A, F Rejali and HA Nadian. 2011. Phosphate solubilizing bacteria and arbuscular mycorrhizal fungi impacts on inorganic phosphorus fractions and wheat. World Appl Sci J 15: 1310-1318.

Zahir AZ, M Arshad and A Khalid. 2004. Improving Maize Yield by Inoculation with Plant Growth Promoting Rhizobacteria. Pak J Soil Sci 15: 7-11.

DOI: http://dx.doi.org/10.5400/jts.2020.v25i1.11-20


  • There are currently no refbacks.


University of OxfordColumbia University LibraryStanford Crossref EBSCO


Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.