Activity of Soil Microorganisms During the Growth of Sweet Corn (Zea Mays Saccharata Sturt) in the Second Planting Time with the Application of Fertilizers and Biochar
Main Article Content
Abstract
Efforts to increase the production of sweet corn can be done with the application of fertilizers, either inorganic, organic orits combination. In addition, the application of soil amendments such as biochar is also expected to improve soil fertility that will indirectly increase the production of sweet corn.Organonitrophos fertilizer is an organic fertilizer developed by lecturers of Faculty of Agriculture, University of Lampung. The research was aimed to study effect the combination of organonitrophos, and inorganic fertilizers, biochar and the interaction between fertilizer combination and biochar on soil respiration and soil microbial biomass.The research was conducted in the Integrated Field Laboratory of Lampung University using 6x2 factorial in a Randomized Block Design with 3 replications. The first factor was six levels combination of organonitrophos and inorganic fertilizers (P0, P1, P2, P3, P4, and P5). The second factor was two levels of biochar dosage (B0 and B1). Data was analyzed by Analysis of Variance and followed by the Least Significant Difference (LSD)Test at 5% level. The observed variables were soil microorganism activity likely soil respiration and soil microbial biomass. The results showed that P3B1treatment (300 kg Urea ha-1, 125 kg SP-36 ha-1, 100 kg KCl ha-1 + 2500 kg organoitrophos ha-1) was the highest soil respiration at of 60 days after planting (DAP). P5 treatment (5000 kg Organonitrophos ha-1) has the highest soil microbial biomasscompared to other treatments at 60 and 90 DAP. B1 treatment (5000 kg biochar ha-1) has higher soil respiration and soil microbial biomasscompared to treatment (0 kg biochar ha-1. There was an interaction between combination of organonitrophos and inorganic fertilizers and biochar on soil respiration at 90 DAP. However, there was no interaction between fertilizer combination and biochar on soil microbial biomass.
Keywords: Biochar, Fertilizer Combination, Organonitrophos, Soil Microbial Biomass Carbon and Soil Respiration
Downloads
Article Details
License for Authors
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
License for Regular Users
Other regular users who want to cite, distribute, remix, tweak, and build upon author’s works, even for commercial purposes, should acknowledge the work’s authorship and initial publication in this journal, licensed under a Creative Commons Attribution License.