Vermicast of Earthworm as Ecosystem Engineers within Different Vermireactor Shape
Abstract
Keywords
Full Text:
PDFReferences
Aalok A, AK Tripathi and P Soni. 2008. Vermicomposting: a better option for organic solid waste management. J Hum Ecol 24: 59-64. doi:10.1080/09709274. 2008.11906100.
Aira M, M Gómez-Brandón, P González-Porto and J Domínguez. 2011. Selective reduction of the pathogenic load of cow manure in an industrial-scale continuous-feeding vermireactor. Bioresource Technol 102: 9633-9637. doi:10.1016/j.biortech. 2011.07.115.
Amouei AL, Z Yousefi and T Khosrafi. 2017. Comparison of vermicompost characteristics produced from sewage sludge of wood and paper industry and household solid wastes. J Environ Health Sci 15: 1-6. doi:10.1186/s40201-017-0269-z.
Cooper AL, ACR Dean and C Hinshelwood. 1968. Factors affecting the growth of bacterial colonies on agar plates. Proc Royal Soc B: Biological Sci 171: 175-199. doi:10.1098/rspb.1968.0063.
de Menezes AB, MT Prendergast-Miller, P Poonpatana, M Farrell, A Bissett, MM Macdonald, P Toscas, AE Richardson and PH Thrall. 2015. C/N ratio drives soil actinobacterial cellobiohydrolase gene diversity. Appl Environ Microbiol 81: 3016-3028. doi:10.1128/AEM.00067-15.
Douds Jr, DD, J Lee, J Uknalis, AA Boateng and C Ziegler-Ulsh. 2014. Pelletized biochar as a carrier for AM fungi in the on-farm system of inoculum production in compost and vermiculite mixture. Compost Sci Util 22: 253-262. doi:10.1080/1065657X.2014.941515.
Edwards CA and KE Fletcher. 1988. Interactions between earthworms and micro-organisms in organic-matter breakdown. Agr Ecosyst Environ 24: 235-247. doi:10.1016/0167-8809(88)90069-2.
Egli Th and JR Quayle. 1986. Influence of the carbon:nitrogen ratio of the growth medium on the cellular composition and the ability of the methylotrophic yeast Hansenula polymorpha to utilize mixed carbon sources. J Gen Microbiol 132: 1779-1788. doi:10.1099/00221287-132-7-1779.
Eviati and Sulaeman. 2009. Petunjuk Teknis Analisis Kimia Tanah, Tanaman, Air, dan Pupuk, 2nd ed., Balai Penelitian Tanah, Departemen Pertanian Republik Indonesia. (in Indonesian).
Formowitz B, F Elango, S Okumoto, T Müller and A Buerkert. 2007. The role of “effective microorganisms” in the composting of banana (Musa ssp.) residues. J Plant Nutr Soil Sci 170: 649-656. doi:10.1002/jpln.200700002.
Franklin RB, JL Garland, CH Bolster and AL Mills. 2001. Impact of dilution on microbial community structure and functional potential: comparison of numerical simulations and batch culture experiments. Appl Environ Microb 67: 702-712. doi:10.1128/AEM.67.2.702.
Ganesh PS, S Gajalakshmi and SA Abbasi. 2009. Vermicomposting of the leaf litter of acacia (Acacia auriculiformis): Possible roles of reactor geometry, polyphenols, and lignin. Bioresource Technol 100: 1819-1827. doi:10.1016/j.biortech. 2008.09.051.
Ge Y, C Chen, Z Xu, SM Eldridge, KY Chan, Y He and J-Z He. 2009. Carbon/nitrogen ratio as a major factor for predicting the effects of organic wastes on soil bacterial communities assessed by DNA-based molecular techniques. Environ Sci Pollut Res 17: 807-815. doi:10.1007/s11356-009-0185-6.
Germida JJ and JR de Freites. 2008. Cultural methods for soil and root-associated microorganisms. In: MR Carter and EG Gregorich (eds). Soil Sampling and Methods of Analysis. Canadian Society of Soil Science, pp. 341-347.
Hanc A and F Vasak. 2014. Processing separated digestate by vermicomposting technology using earthworms of the genus Eisenia. Int J Environ Sci Technol 12: 1183-1190. doi:10.1007/s13762-014-0500-8.
Hanc A and P Pliva. 2013. Vermicomposting technology as a tool for nutrient recovery from kitchen bio-waste. J Mater Cycles Waste Man 15: 431-439. doi:10.1007/s10163-013-0127-8.
Harinikumar KM and DJ Bagyaraj. 1994. Potential of earthworms, ants, millipedes, and termites for dissemination of vesicular-arbuscularmycorrhizal fungi in soil. Biol Fertil Soils 18: 115-118. doi:10.1007/BF00336456.
Hoeffner K, C Monard, M Santonja and D Cluzeau. 2018. Feeding behaviour of epi-anecic species and their impact on soil microbial communities. Soil Biol Biochem 125: 1-9. doi:10.1016/j.soilbio.2018.06.017.
Huang K, F Li, Y Wei, X Fu and X Chen. 2014. Effects of earthworms on physicochemical properties and microbial proûles during vermicomposting of fresh fruit and vegetable wastes. Bioresour Technol 170: 45-52. doi:10.1016/j.biortech.2014.07.058.
Jain K, J Singh and SK Gupta. 2003. Development of a modified vermireactor for efficient vermicomposting: a laboratory study. Bioresour Technol 90: 335-337. doi:10.1016/S0960-8524(03)00048-8.
Jones CG, JH Lawton and M Shachak. 1994. Organisms as ecosystem engineers. Oikos 69: 373-386. doi:10.2307/3545850.
Jones DL and E Oburger. 2011. Solubilization of phosphorus by soil microorganisms. In: EK Bünemann, A Oberson and E Frossard (eds). Phosphorous in Action: Biological Processes in Soil Phosphorous Cycling, 26. Springer-Verlag, Berlin Heidelberg, pp. 169-198. doi:10.1007/978-3-642-15271-9.
Jouquet P, J Dauber, J Lagerlöf, P Lavelle and M Lepage. 2006. Soil invertebrates as ecosystem engineers: intended and accidental effects on soil and feedbacks loops. Appl Soil Ecol 32: 153-164. doi:10.1016/j.apsoil.2005.07.004.
Kilowasid LMH, Herlina, H Syaf, LO Safuan, M Tufaila, S Leomo and B Widiawan. 2015. Engineering of soil biological quality from nickel mining stockpile using two earthworm ecological groups. J Degraded Mining Land Manage 2: 361-367. doi:10.15243/jdmlm.2015.023.361.
Lavelle P, A Spain, M Blouin, G Brown, T Decaëns, Grimaldi, J Jiménez, D Mckey, J Mathieu,E Velasquez and A Zangerlé. 2016. Ecosystem engineers in a self-organized soil: a review of concepts and future research questions. Soil Sci 81: 91-109. doi:10.1097/SS.0000000000000155.
Lazcano C, M Gómez-Brandón and J Domínguez. 2008. Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere 72: 1013-1019. doi:10.1016/j.chemosphere.2008.04.016.
Lebaron P, JF Ghiglione, C Fajon, N Batailler and P Normand. 1998. Phenotypic and genetic within a colony morphotype. FEMS Microbiol Lett 160: 137-143. doi:10.1111/j.1574-6968.1998.tb12903.x.
Leejeerajumnean A, JM Ames and JD Owens. 2000. Effect of ammonia on the growth of Bacillus species and some other bacteria. Lett Appl Microbiol 30: 385-389. doi:10.1046/j.1472-765x.2000.00734.x.
Mooshammer M, W Wanek, I Hämmerle, L Fuchslueger, F Hofhansl, A Knoltsch, J Schnecker, M Takriti,M Watzka, B Wild, KM Keiblinger, S Keiblinger and A Richter. 2014. Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling. Nat Commun 5: 3694. doi:10.1038/ncomms4694.
Mora P, C Seuge, JP Rossi, and C Rouland. 2006. Abundance of biogenic structures of earthworm and termites in a mango orchard. Eur J Soil Biol 42: 250-253. doi:10.1016/j.ejsobi.2006.07.023.
Muller AK, K Westergaard, S Christensen and SJ Sørensen. 2002. The diversity and function of soil microbial communities exposed to different disturbances. Microb Ecol 44: 49-58. doi:10.1007/s00248-001-0042-8.
Nair J, V Sekiozoic and M Anda. 2006. Effect of pre-composting on vermicomposting of kitchen waste. Bioresour Technol 97: 2091-2095. doi:10.1016/j.biortech.2005.09.020.
Needham AE. 1957. Components of nitrogenous excreta in the earthworms Lumbricus terrestris L. and Eisenia foetida (Savigny). J Exp Biol 34: 425-446.
Nigussie A, TW Kuyper, S Bruun and A de Neergaard. 2016. Vermicomposting as a technology for reducing nitrogen losses and greenhouse gas emissions from small-scale composting. J Clean Prod 139: 429-439. doi:10.1016/j.jclepro.2016.08.058.
Olsen RA and LR Bakken. 1987. Viability of soil bacteria: optimization of plate-counting technique and comparison between total counts and plate counts within different size groups. Microb Ecol 13: 59-74. doi:10.1007/BF02014963.
Pandya U, D Maheshwari and M Saraf. 2014. Assessment of ecological diversity of rhizobacterial communities in vermicompost and analysis of their potential to improve plant growth. Biologia 69: 968-976. doi:10.2478/s11756-014-0406-4.
Pathma J and N Sakthivel. 2012. Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. Springerplus 1: 26. doi:10.1186/2193-1801-1-26.
Pollack RA, L Findlay, W Mondschein and RR Modesto. 2009. Laboratory exercises in microbiology (3rd ed.). John Wiley & Sons, Inc.
Pramanik P, GK Ghosh, PK Ghosal and P Banik. 2007. Changes in organic – C, N, P and K and enzyme activities in vermicompost of biodegradable organic wastes under liming and microbial inoculant. Bioresource Technol 98: 2485-2494. doi:10.1016/j.wasman.2009.12.007.
Pramanik P. 2010. Changes in microbial properties and nutrient cycling in bagasse and coir during vermicomposting: quantification of fungal biomass through ergosterol estimation in vermicompost. Waste Manage 30: 787-791. doi:10.1016/j.biortech.2006.09.017.
Raphael K and K Velmourougane. 2011. Chemical and microbiological changes during vermicomposting of coffee pulp using exotic (Eudrilus eugeniae) and native earthworm (Perionyx ceylanesis) species. Biodegradation 22: 497-507. doi:10.1007/s10532-010-9422-4.
Reddell P and AV Spain. 1991. Earthworms as vectors of viable propagules of mycorrhizal fungi. Soil Biol Biochem 23: 767-774. doi:10.1016/0038-0717(91)90147-C.
Rekha GS, PK Kaleena, D Elumalai, MP Srikumaran and VN Maheswari. 2018. Effects of vermicompost and plant growth enchancer in the exo-morphological features of Capsicum annum (Linn.) Hepper. Int J Recycl Org Waste Agric 7: 83-88. doi:10.1007/s40093-017-0191-5.
Salmon S. 2001. Earthworm excreta (mucus and urine) affect the distribution of springtails in forest soil. Biol Fertil Soils 34: 304-310. doi:10.1007/s003740100407.
Sekar KR and N Karmegam. 2010. Earthworm casts as an alternate carrier material for biofertilizers: Assessment of endurance and viability of Azotobacter chroococcum, Bacillus megaterium and Rhizobium leguminosarum. Sci Hortic 124: 286-289. doi:10.1016/j.scienta.2010.01.002.
Sharma K and VK Garg. 2018. Comparative analysis of vermicompost quality produced from rice straw and paper waste employing earthworm Eisenia fetida (Sav.). Bioresour Technol 250: 708-715. doi:10.1016/j.biortech.2017.11.101.
Sim EYS and TY Wu. 2010. The Potential Reuse of Biodegradable Municipal Solid Wastes (MSW) as Feedstocks in Vermicomposting. J Sci Food Agr 90: 2153-2162. doi:10.1002/jsfa.4127.
Singh RP, P Singh, ASF Araujo, MH Ibrahim and O Sulaiman. 2011. Management of urban solid waste: vermicomposting a sustainable option. Resour Conserv Recyc 5: 719-729. doi:10.1016/j.resconrec.2011.02.005.
Singh S, J Singh and AP Vig. 2016. Earthworms as ecological engineers to change the physico-chemical properties of soil: soil vs vermicast. Ecol Eng 90: 1-5.doi:10.1016/j.ecoleng.2016.01.072.
Soobhany N, R Mohee and VK Garg. 2015. Recovery of nutrient from municipal solid waste by composting and vercomposting using earthworm Eudrilus eugeniae. J Environ Chem Eng 3: 2931-2942. doi:10.1016/j.jece.2015.10.025.
Subramanian S, M Sivarajan and S Saravanapriya. 2010. Chemical changes during vermicomposting of sago industry solid waste. J Hazard Mater 179: 318-322. doi:10.1016/j.jhazmat.2010.03.007.
Tognetti C, F Laos, MJ Mazzarino and MT Hernandez. 2005. Composting vs vermicomposting: a comparison of end product quality. Compost Sci Util 13: 6-13. doi:10.1080/1065657X.2005.10702212.
Vijayabharathi R, A Sathya and S Gopalakhrisnan. 2015. Plant growth-promoting microbes from herbal vermicompost. In: D Egamberdieva, S Shrivastava and A Varma (eds). Plant-growth-promoting rhizobacteria (PGPR) and medicinal plants. Springer International Publishing, Switzerland, pp. 71-88. doi:10.1007/978-3-319-13401-7.
Wodika BR, RP Klopf and SG Baer. 2014. Colonization and recovery of invertebrate ecosystem engineers during prairie restoration. Restor Ecol 22: 456-464. doi:10.1111/rec.12084.
Wu Y, J Zeng, Q Zhu, Z Zhang and X Lin. 2017. pH is the primary determinant of the bacterial community structure in agricultural soils impacted by polycyclic aromatic hydrocarbon pollution. Sci Rep 7: 40093. doi:10.1038/srep40093.
Zhang Y, H Shen, X He, BW Thomas, NZ Lupwayi, X Hao, S Xi. 2017. Fertilization shapes bacterial community structure by alteration of soil pH. Front Microbiol 8: 1325. doi:10.3389/fmicb.2017.01325.
DOI: http://dx.doi.org/10.5400/jts.2020.v25i2.83-92
Refbacks
- There are currently no refbacks.
INDEXING SITE
This work is licensed under a Creative Commons Attribution 4.0 International License.