Vermicast of Earthworm as Ecosystem Engineers within Different Vermireactor Shape

Laode Muhammad Harjoni Kilowasid, Muhammad Fahyu Sanjaya, Tresjia Corina Rakian, Syamsu Alam, Muhammad Kabil Djafar, Muliddin Muliddin

Abstract


Earthworms as ecosystem engineers can modify the quality of vermibed assembled from mixed soil with organic material in a vermireactor. Various in shapes of the vermireactor are used to produce a vermicast for biofertilizer in agriculture. The objective of this research was to study the vermicast production and its quality produced from a variety of vermireactor shapes. Earthworm (Pheretima sp.) which was applied to the vermireactor consists of: with- and without of earthworms. Three shapes of the vermireactor, namely cylinder, square, and rectangular has been tested. Compost of Chromolaena odorata pruning mixed with soil was used as vermibed. The vermicast process ran until 28 days. The results showed that vermireactor with earthworms which were successfully converted to vermicast was about 49.24% from the vermibed volume, however, no vermicast formed was found from vermireactor without earthworms. The difference in vermicast produced from different vermireactor shapes was not significant. The value of pH, total-N, and C/N ratio among the vermicast was different. The number of the morphological character of bacteria colonies in the vermicast produced from the square vermireactor was the highest, while from cylinder vermireactor was the lowest. We concluded that the quality of vermicast from earthworm (Pheretima sp.) activity was determined by the shape of the vermireactor.

Keywords


Ecosystem engineers; quality; vermibed; vermicast; vermireactor

Full Text:

PDF

References


Aalok A, AK Tripathi and P Soni. 2008. Vermicomposting: a better option for organic solid waste management. J Hum Ecol 24: 59-64. doi:10.1080/09709274. 2008.11906100.

Aira M, M Gómez-Brandón, P González-Porto and J Domínguez. 2011. Selective reduction of the pathogenic load of cow manure in an industrial-scale continuous-feeding vermireactor. Bioresource Technol 102: 9633-9637. doi:10.1016/j.biortech. 2011.07.115.

Amouei AL, Z Yousefi and T Khosrafi. 2017. Comparison of vermicompost characteristics produced from sewage sludge of wood and paper industry and household solid wastes. J Environ Health Sci 15: 1-6. doi:10.1186/s40201-017-0269-z.

Cooper AL, ACR Dean and C Hinshelwood. 1968. Factors affecting the growth of bacterial colonies on agar plates. Proc Royal Soc B: Biological Sci 171: 175-199. doi:10.1098/rspb.1968.0063.

de Menezes AB, MT Prendergast-Miller, P Poonpatana, M Farrell, A Bissett, MM Macdonald, P Toscas, AE Richardson and PH Thrall. 2015. C/N ratio drives soil actinobacterial cellobiohydrolase gene diversity. Appl Environ Microbiol 81: 3016-3028. doi:10.1128/AEM.00067-15.

Douds Jr, DD, J Lee, J Uknalis, AA Boateng and C Ziegler-Ulsh. 2014. Pelletized biochar as a carrier for AM fungi in the on-farm system of inoculum production in compost and vermiculite mixture. Compost Sci Util 22: 253-262. doi:10.1080/1065657X.2014.941515.

Edwards CA and KE Fletcher. 1988. Interactions between earthworms and micro-organisms in organic-matter breakdown. Agr Ecosyst Environ 24: 235-247. doi:10.1016/0167-8809(88)90069-2.

Egli Th and JR Quayle. 1986. Influence of the carbon:nitrogen ratio of the growth medium on the cellular composition and the ability of the methylotrophic yeast Hansenula polymorpha to utilize mixed carbon sources. J Gen Microbiol 132: 1779-1788. doi:10.1099/00221287-132-7-1779.

Eviati and Sulaeman. 2009. Petunjuk Teknis Analisis Kimia Tanah, Tanaman, Air, dan Pupuk, 2nd ed., Balai Penelitian Tanah, Departemen Pertanian Republik Indonesia. (in Indonesian).

Formowitz B, F Elango, S Okumoto, T Müller and A Buerkert. 2007. The role of “effective microorganisms” in the composting of banana (Musa ssp.) residues. J Plant Nutr Soil Sci 170: 649-656. doi:10.1002/jpln.200700002.

Franklin RB, JL Garland, CH Bolster and AL Mills. 2001. Impact of dilution on microbial community structure and functional potential: comparison of numerical simulations and batch culture experiments. Appl Environ Microb 67: 702-712. doi:10.1128/AEM.67.2.702.

Ganesh PS, S Gajalakshmi and SA Abbasi. 2009. Vermicomposting of the leaf litter of acacia (Acacia auriculiformis): Possible roles of reactor geometry, polyphenols, and lignin. Bioresource Technol 100: 1819-1827. doi:10.1016/j.biortech. 2008.09.051.

Ge Y, C Chen, Z Xu, SM Eldridge, KY Chan, Y He and J-Z He. 2009. Carbon/nitrogen ratio as a major factor for predicting the effects of organic wastes on soil bacterial communities assessed by DNA-based molecular techniques. Environ Sci Pollut Res 17: 807-815. doi:10.1007/s11356-009-0185-6.

Germida JJ and JR de Freites. 2008. Cultural methods for soil and root-associated microorganisms. In: MR Carter and EG Gregorich (eds). Soil Sampling and Methods of Analysis. Canadian Society of Soil Science, pp. 341-347.

Hanc A and F Vasak. 2014. Processing separated digestate by vermicomposting technology using earthworms of the genus Eisenia. Int J Environ Sci Technol 12: 1183-1190. doi:10.1007/s13762-014-0500-8.

Hanc A and P Pliva. 2013. Vermicomposting technology as a tool for nutrient recovery from kitchen bio-waste. J Mater Cycles Waste Man 15: 431-439. doi:10.1007/s10163-013-0127-8.

Harinikumar KM and DJ Bagyaraj. 1994. Potential of earthworms, ants, millipedes, and termites for dissemination of vesicular-arbuscularmycorrhizal fungi in soil. Biol Fertil Soils 18: 115-118. doi:10.1007/BF00336456.

Hoeffner K, C Monard, M Santonja and D Cluzeau. 2018. Feeding behaviour of epi-anecic species and their impact on soil microbial communities. Soil Biol Biochem 125: 1-9. doi:10.1016/j.soilbio.2018.06.017.

Huang K, F Li, Y Wei, X Fu and X Chen. 2014. Effects of earthworms on physicochemical properties and microbial proûles during vermicomposting of fresh fruit and vegetable wastes. Bioresour Technol 170: 45-52. doi:10.1016/j.biortech.2014.07.058.

Jain K, J Singh and SK Gupta. 2003. Development of a modified vermireactor for efficient vermicomposting: a laboratory study. Bioresour Technol 90: 335-337. doi:10.1016/S0960-8524(03)00048-8.

Jones CG, JH Lawton and M Shachak. 1994. Organisms as ecosystem engineers. Oikos 69: 373-386. doi:10.2307/3545850.

Jones DL and E Oburger. 2011. Solubilization of phosphorus by soil microorganisms. In: EK Bünemann, A Oberson and E Frossard (eds). Phosphorous in Action: Biological Processes in Soil Phosphorous Cycling, 26. Springer-Verlag, Berlin Heidelberg, pp. 169-198. doi:10.1007/978-3-642-15271-9.

Jouquet P, J Dauber, J Lagerlöf, P Lavelle and M Lepage. 2006. Soil invertebrates as ecosystem engineers: intended and accidental effects on soil and feedbacks loops. Appl Soil Ecol 32: 153-164. doi:10.1016/j.apsoil.2005.07.004.

Kilowasid LMH, Herlina, H Syaf, LO Safuan, M Tufaila, S Leomo and B Widiawan. 2015. Engineering of soil biological quality from nickel mining stockpile using two earthworm ecological groups. J Degraded Mining Land Manage 2: 361-367. doi:10.15243/jdmlm.2015.023.361.

Lavelle P, A Spain, M Blouin, G Brown, T Decaëns, Grimaldi, J Jiménez, D Mckey, J Mathieu,E Velasquez and A Zangerlé. 2016. Ecosystem engineers in a self-organized soil: a review of concepts and future research questions. Soil Sci 81: 91-109. doi:10.1097/SS.0000000000000155.

Lazcano C, M Gómez-Brandón and J Domínguez. 2008. Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere 72: 1013-1019. doi:10.1016/j.chemosphere.2008.04.016.

Lebaron P, JF Ghiglione, C Fajon, N Batailler and P Normand. 1998. Phenotypic and genetic within a colony morphotype. FEMS Microbiol Lett 160: 137-143. doi:10.1111/j.1574-6968.1998.tb12903.x.

Leejeerajumnean A, JM Ames and JD Owens. 2000. Effect of ammonia on the growth of Bacillus species and some other bacteria. Lett Appl Microbiol 30: 385-389. doi:10.1046/j.1472-765x.2000.00734.x.

Mooshammer M, W Wanek, I Hämmerle, L Fuchslueger, F Hofhansl, A Knoltsch, J Schnecker, M Takriti,M Watzka, B Wild, KM Keiblinger, S Keiblinger and A Richter. 2014. Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling. Nat Commun 5: 3694. doi:10.1038/ncomms4694.

Mora P, C Seuge, JP Rossi, and C Rouland. 2006. Abundance of biogenic structures of earthworm and termites in a mango orchard. Eur J Soil Biol 42: 250-253. doi:10.1016/j.ejsobi.2006.07.023.

Muller AK, K Westergaard, S Christensen and SJ Sørensen. 2002. The diversity and function of soil microbial communities exposed to different disturbances. Microb Ecol 44: 49-58. doi:10.1007/s00248-001-0042-8.

Nair J, V Sekiozoic and M Anda. 2006. Effect of pre-composting on vermicomposting of kitchen waste. Bioresour Technol 97: 2091-2095. doi:10.1016/j.biortech.2005.09.020.

Needham AE. 1957. Components of nitrogenous excreta in the earthworms Lumbricus terrestris L. and Eisenia foetida (Savigny). J Exp Biol 34: 425-446.

Nigussie A, TW Kuyper, S Bruun and A de Neergaard. 2016. Vermicomposting as a technology for reducing nitrogen losses and greenhouse gas emissions from small-scale composting. J Clean Prod 139: 429-439. doi:10.1016/j.jclepro.2016.08.058.

Olsen RA and LR Bakken. 1987. Viability of soil bacteria: optimization of plate-counting technique and comparison between total counts and plate counts within different size groups. Microb Ecol 13: 59-74. doi:10.1007/BF02014963.

Pandya U, D Maheshwari and M Saraf. 2014. Assessment of ecological diversity of rhizobacterial communities in vermicompost and analysis of their potential to improve plant growth. Biologia 69: 968-976. doi:10.2478/s11756-014-0406-4.

Pathma J and N Sakthivel. 2012. Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. Springerplus 1: 26. doi:10.1186/2193-1801-1-26.

Pollack RA, L Findlay, W Mondschein and RR Modesto. 2009. Laboratory exercises in microbiology (3rd ed.). John Wiley & Sons, Inc.

Pramanik P, GK Ghosh, PK Ghosal and P Banik. 2007. Changes in organic – C, N, P and K and enzyme activities in vermicompost of biodegradable organic wastes under liming and microbial inoculant. Bioresource Technol 98: 2485-2494. doi:10.1016/j.wasman.2009.12.007.

Pramanik P. 2010. Changes in microbial properties and nutrient cycling in bagasse and coir during vermicomposting: quantification of fungal biomass through ergosterol estimation in vermicompost. Waste Manage 30: 787-791. doi:10.1016/j.biortech.2006.09.017.

Raphael K and K Velmourougane. 2011. Chemical and microbiological changes during vermicomposting of coffee pulp using exotic (Eudrilus eugeniae) and native earthworm (Perionyx ceylanesis) species. Biodegradation 22: 497-507. doi:10.1007/s10532-010-9422-4.

Reddell P and AV Spain. 1991. Earthworms as vectors of viable propagules of mycorrhizal fungi. Soil Biol Biochem 23: 767-774. doi:10.1016/0038-0717(91)90147-C.

Rekha GS, PK Kaleena, D Elumalai, MP Srikumaran and VN Maheswari. 2018. Effects of vermicompost and plant growth enchancer in the exo-morphological features of Capsicum annum (Linn.) Hepper. Int J Recycl Org Waste Agric 7: 83-88. doi:10.1007/s40093-017-0191-5.

Salmon S. 2001. Earthworm excreta (mucus and urine) affect the distribution of springtails in forest soil. Biol Fertil Soils 34: 304-310. doi:10.1007/s003740100407.

Sekar KR and N Karmegam. 2010. Earthworm casts as an alternate carrier material for biofertilizers: Assessment of endurance and viability of Azotobacter chroococcum, Bacillus megaterium and Rhizobium leguminosarum. Sci Hortic 124: 286-289. doi:10.1016/j.scienta.2010.01.002.

Sharma K and VK Garg. 2018. Comparative analysis of vermicompost quality produced from rice straw and paper waste employing earthworm Eisenia fetida (Sav.). Bioresour Technol 250: 708-715. doi:10.1016/j.biortech.2017.11.101.

Sim EYS and TY Wu. 2010. The Potential Reuse of Biodegradable Municipal Solid Wastes (MSW) as Feedstocks in Vermicomposting. J Sci Food Agr 90: 2153-2162. doi:10.1002/jsfa.4127.

Singh RP, P Singh, ASF Araujo, MH Ibrahim and O Sulaiman. 2011. Management of urban solid waste: vermicomposting a sustainable option. Resour Conserv Recyc 5: 719-729. doi:10.1016/j.resconrec.2011.02.005.

Singh S, J Singh and AP Vig. 2016. Earthworms as ecological engineers to change the physico-chemical properties of soil: soil vs vermicast. Ecol Eng 90: 1-5.doi:10.1016/j.ecoleng.2016.01.072.

Soobhany N, R Mohee and VK Garg. 2015. Recovery of nutrient from municipal solid waste by composting and vercomposting using earthworm Eudrilus eugeniae. J Environ Chem Eng 3: 2931-2942. doi:10.1016/j.jece.2015.10.025.

Subramanian S, M Sivarajan and S Saravanapriya. 2010. Chemical changes during vermicomposting of sago industry solid waste. J Hazard Mater 179: 318-322. doi:10.1016/j.jhazmat.2010.03.007.

Tognetti C, F Laos, MJ Mazzarino and MT Hernandez. 2005. Composting vs vermicomposting: a comparison of end product quality. Compost Sci Util 13: 6-13. doi:10.1080/1065657X.2005.10702212.

Vijayabharathi R, A Sathya and S Gopalakhrisnan. 2015. Plant growth-promoting microbes from herbal vermicompost. In: D Egamberdieva, S Shrivastava and A Varma (eds). Plant-growth-promoting rhizobacteria (PGPR) and medicinal plants. Springer International Publishing, Switzerland, pp. 71-88. doi:10.1007/978-3-319-13401-7.

Wodika BR, RP Klopf and SG Baer. 2014. Colonization and recovery of invertebrate ecosystem engineers during prairie restoration. Restor Ecol 22: 456-464. doi:10.1111/rec.12084.

Wu Y, J Zeng, Q Zhu, Z Zhang and X Lin. 2017. pH is the primary determinant of the bacterial community structure in agricultural soils impacted by polycyclic aromatic hydrocarbon pollution. Sci Rep 7: 40093. doi:10.1038/srep40093.

Zhang Y, H Shen, X He, BW Thomas, NZ Lupwayi, X Hao, S Xi. 2017. Fertilization shapes bacterial community structure by alteration of soil pH. Front Microbiol 8: 1325. doi:10.3389/fmicb.2017.01325.




DOI: http://dx.doi.org/10.5400/jts.2020.v25i2.83-92

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.