Effect Carrier Materials of Bradyrhizobium sp. strain PZS_A08 on Growth of Indigofera zollingeriana

Wilhelmus Terang Arga Sanjaya, Sari Yulia Kartika, Desak Ketut Tristiana Sukmadewi, Rahayu Widyastuti, Iswandi Anas

Abstract


Sustainable forage production is needed to meet animal feed needs as the livestock industry increases. The purpose of this study is to evaluate the effect of liquid and solid carrier material on the effectiveness and infectivity of Bradyrhizobium sp. strain PZS_A08 on the growth of Indigofera zollingeriana (I. zollingeriana). The two carrier materials used were zeolite (solid) and molasses (liquid). This study used two carrier materials consisting of zeolite (solid) and molasses (liquid). The five treatments given were P0 (50% NPK), P1 (50% NPK+liquid biofertilizer), P2 (50% NPK+sterile liquid biofertilizer), P3 (50% NPK+solid biofertilizer), P4 (50 % NPK+sterile solid biofertilizer), P5 (100% NPK). Observations were made on the plant's height, number of leaves, number of nodules, upperparts and root wet biomass, root and upper parts dry biomass, root length, and microbial population). The use of liquid and solid carrier materials effectively affected the effectiveness and infectivity of Bradyrhizobium sp. strain PZS_A08 on  I. zollingeriana. Inoculants Bradyrhizobium sp. strain PZS_A08 significantly increased plants' growth and reduced the use of 50% NPK fertilizer. Cold storage temperature (5ºC) effectively maintained Bradyrhizobium sp. strain PZS_A08 on liquid and solid carriers, while solid carriers showed better effectiveness at room temperature storage (30oC). Through this research, solid carriers such as zeolite are recommended as carriers for Bradyrhizobium sp. filter PZS_A08.

Keywords


Biofertilizer; Bradyrhizobium; Carrier; I. zollingeriana; Nitrogen fixing bacteria

Full Text:

PDF

References


Abd El-Fattah DA, WE Eweda, MS Zayed, and MK Hassanein. 2013. Effect of Carrier Materials, Sterilization Method, and Storage Temperature on Survival and Biological Activities of Azotobacter Chroococcum Inoculant. Annals of Agricultural Sciences 58(2): 111–18. http://dx.doi.org/10.1016/j.aoas.2013.07.001.

Abdullah L, DDS Budhie, and AD Lubis. 2011. Pengaruh Aplikasi Urin Kambing Dan Pupuk Cair Organik Komersial Terhadap Beberapa Parameter Agronomi Pada Tanaman Pakan Indigofera Sp. Pastura: Journal of Tropical Forage Science 1(1): 5–8.

Czaban J, A Gajda, and B Wróblewska. 2007. The Motility of Bacteria from Rhizosphere and Different Zones of Winter Wheat Roots. Polish Journal of Environmental Studies 16(2): 301–8.

Davies KG, and R Whitbread. 1989. Factors Affecting the Colonisation of a Root System by Fluorescent Pseudomonads: The Effects of Water, Temperature and Soil Microflora. Plant and Soil 116(2): 247–56.

Devendra C, and JB Liang. 2012. Conference Summary of Dairy Goats in Asia: Current Status, Multifunctional Contribution to Food Security and Potential Improvements. Small Ruminant Research 108(1–3): 1–11. http://dx.doi.org/10.1016/j.smallrumres.2012.08.012.

Downie JA. 2005. Integrative Biology: Sea Hares Saved by a Delicious Distraction. Current Biology 15(6): 196–98.

Duan C, P Shi, N Zong, J Wang, M Song, X Zhang. 2019. Feeding Solution: Crop-Livestock Integration via Crop-Forage Rotation in the Southern Tibetan Plateau. Agriculture, Ecosystems and Environment 284 (June): 106589. https://doi.org/10.1016/j.agee.2019.106589.

Faradillah F, R Mutia, and L Abdullah. 2015. Substitution of Soybean Meal with I. zollingerianaTop Leaf Meal on Egg Quality of Cortunix Cortunix Japonica. Media Peternakan 38(3): 192–97.

Gopalakrishnan S, A Sathya, R Vijayabharathi, RK Varshney,CLL Gowda, L Krishnamurthy. 2015. Plant Growth Promoting Rhizobia: Challenges and Opportunities. 3 Biotech 5(4): 355–77. http://dx.doi.org/10.1007/s13205-014-0241-x.

Hassen A, NFG Rethman, Z Apostolides, and WA Van Niekerk. 2008. Forage Production and Potential Nutritive Value of 24 Shrubby Indigofera Accessions under Field Conditions in South Africa. Tropical Grasslands 42(2): 96–103.

Hungria M, MF Loureiro, IC Mendes, RJ Campo, and PH Graham. 2005. Inoculationt Preparation, Production, and Application. In: D Werner and WE Newton (eds). Nitrogen Fixation In Agriculture, Forestry, Ecology, and The Environment. Springer, pp. 223–53.

Hutapea PS, L Abdullah, PDMH. Karti, and I Anas. 2018. Improvement of I. zollingerianaProduction and Methionine Content through Inoculation of Nitrogen-Fixing Bacteria. Tropical Animal Science Journal 41(1): 37–45.

Kaljeet S, F Keyeo, and H Amir. 2011. Temperature on Survivability of Rhizobial Inoculant. Asian journal of plant sciences 10(6): 331–37.

Khandare RN, R Chandra, N Pareek, and KP Raverkar. 2015. Effect of Varying Rates and Methods of Carrier Based and Liquid Azotobacter and PSB Biofertilizers on Yield and Nutrient Uptake by Wheat (Triticum Aestivum L.) and Soil Properties. Journal of the Indian Society of Soil Science 63(4): 436–41.

Koten BB, R Wea, RD Soetrisno, N Ngadiyono, B. Soewignyo. 2014. Konsumsi Nutrien Ternak Kambing Yang Mendapatkan Hijauan Hasil Tumpangsari Arbila (Phaseolus Lunatus) Dengan Sorgum Sebagai Tanaman Sela Pada Jarak Tanam Arbila Dan Jumlah Baris Sorgum Yang Berbeda. Jurnal Ilmu Ternak 1(8): 38–45.

Lindström K, and SA Mousavi. 2020. Effectiveness of Nitrogen Fixation in Rhizobia. Microbial Biotechnology 13(5): 1314–35.

Mohamed ASA, AK Khider, and S Muniandy. 2016. Effect of Storage Temperature, Duration and Types of Biofertilizer Carriers on Survival and Numbers of Bacterial Strains Bacillus Megaterium Var. Phosphaticum, Azotobacter Chroococcum, Rhizobium Leguminosarum and Transformant, Transconjugant B. Megateriu.” In International Conference on Agricultural, Food, BIological and Health Sciences,.

Mohd-Radzman NA, MA Djordjevic, and N Imin. 2013. Nitrogen Modulation of Legume Root Architecture Signaling Pathways Involves Phytohormones and Small Regulatory Molecules. Frontiers in Plant Science 4(OCT): 1–7.

Mukhtar S, I Shahid, S Mehnaz, and KA Malik. 2017. Assessment of Two Carrier Materials for Phosphate Solubilizing Biofertilizers and Their Effect on Growth of Wheat (Triticum Aestivum L.). Microbiological Research 205(May): 107–17. http://dx.doi.org/10.1016/j.micres.2017.08.-011.

Nguyen HP, H Miwa, T Kaneko, S Sato, and S Okazaki. 2017. Identification of Bradyrhizobium Elkanii Genes Involved in Incompatibility with Vigna Radiate. Genes 8(12).

Nurhayu A, and D Pasambe. 2016. Indigofera Sebagai Substitusi Hijauan Pada Pakan Sapi Potong Di Kabupaten Bulukumba Sulawesi Selatan. Seminar Nasional Peternakan 2: 52–56.

Santos MS, MA Nogueira, and M Hungria. 2019. Microbial Inoculants: Reviewing the Past, Discussing the Present and Previewing an Outstanding Future for the Use of Beneficial Bacteria in Agriculture. AMB Express 9(1). https://doi.org/10.1186/s13568-019-0932-0.

Simanuhuruk K, and J Sirait. 2009. Pemanfaatan Leguminosa Pohon Indigofera Sp. Sebagai Pakan Basal Kambing Boerka Fase Pertumbuhan. Seminar Nasional Peternakan Dan Veteriner 2009 24(2): 75–82.

Tabacco E, L Comino, and G Borreani. 2018. Production Efficiency, Costs and Environmental Impacts of Conventional and Dynamic Forage Systems for Dairy Farms in Italy. European Journal of Agronomy 99(January): 1–12. https://doi.org/10.1016/j.eja.2018.06.004.

Tarigan A, and SP Ginting. 2011. Pengaruh Taraf Pemberian Indigofera Sp . Terhadap Konsumsi Dan Kecernaan Pakan Serta Pertambahan Bobot Hidup Kambing Yang Diberi Rumput Brachiaria Ruziziensis. Jurnal Ilmu Ternak dan Veteriner 16(1): 25–32.

Tinsley TL, S Chumbley, C Mathis, Rd Machen, BL Turner. 2019. Managing Cow Herd Dynamics in Environments of Limited Forage Productivity and Livestock Marketing Channels: An Application to Semi-Arid Pacific Island Beef Production Using System Dynamics. Agricultural Systems 173(February): 78–93. https://doi.org/10.1016/j.agsy.2019.02.014.

Tricot F, Y Crozat, and S Pellerin. 1997. Root System Growth and Nodule Establishment on Pea (Pisum Sativum L.). Journal of Experimental Botany 48(316): 1935–41.

Walker R, S Rossall, and MJC Asher. 2002. Colonization of the Developing Rhizosphere of Sugar Beet Seedlings by Potential Biocontrol Agents Applied as Seed Treatments. Journal of Applied Microbiology 92(2): 228–37.




DOI: http://dx.doi.org/10.5400/jts.2021.v26i2.95-103

Refbacks

  • There are currently no refbacks.


INDEXING SITE

University of OxfordColumbia University LibraryStanford Crossref EBSCO

DOAJ

 

  


Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.