Using Geostatistics for Spatial Analysis of Soil Moisture Content, Electrical Conductivity, and pH at Paddy Fields

Yagus Wijayanto, Muhammad Aldian Dwi Kustianto, Subhan Arif Budiman, Ika Purnamasari

Abstract


Soil is dynamic due to various internal and external processes exerted on the soil, resulting in unique soil characteristics in space in short and long distances. Geostatistics (kriging) is the method of quantifying the spatial variation of soil properties. This research was mainly aimed at applying geostatistics to quantify and interpolate the spatial dependence and structure of three soil properties, namely pH, EC, and Soil Moisture Content (SMC) in a small area. This research was conducted on paddy fields in Mlandingan Kulon Village, Situbondo Regency. Sampling was conducted on an area of   9.2 ha with 31 sample points. Normal data distribution was found for pH and EC, whereas this was not the case for SMC. The results of the analysis showed that most of the pH values   were alkaline (>8), EC values were non-saline (<2 mm/cm), and SMC was in the low category (<20%). The results show that for three soil properties, weak dependencies were observed. The values of Root Mean Square Error (RMSE)  confirmed that kriging with exponential was better compared to the spherical model, resulting in the RMSE of 0.546 (pH), 0.041 (EC), and 1.512 (SMC).

Keywords


EC; geostatistic; pH; SMC; spatial analysis

Full Text:

PDF

References


AbdelRahman MAE, YM Zakarya, MM Metwaly, and G Koubouris. 2020. Deciphering soil spatial variability through geostatistics and interpolation techniques. Sustainability 13: p.194. https://doi.org/10.3390/su13010194.

Bangroo SA, JA Sofi, MI Bhat, SA Mir, T Mubarak, and O Bashir. 2021. Quantifying spatial variability of soil properties in apple orchards of Kashmir, India, using geospatial techniques. Arabi J Geosci 14: 1-10. doi: https://doi.org/10.1007/s12517-021-08457-6.

Bautista F. 2021. Geostatistical analysis of soil properties of the karstic sub-horizontal plain of the Yucatan peninsula. Tropical and Subtropical Agroecosystems 24: 1–11. doi: http://dx.doi.org/10.56369/tsaes.3540.

Bilonick RA. 1991. An introduction to applied geostatistics. Technometrics. 33: 483–485. doi: https://doi.org/10.1080/00401706.1991.10484886.

Cahyana D, B Barus, B Mulyanto, Y Sulaeman and J Huang. 2022. Using a fuzzy logic approach to reveal soil-landscape relationships produced by digital soil maps in the humid tropical region of East Java, Indonesia. Geoderma Regional 28: e00468. doi: https://doi.org/10.1016/j.geodrs.2021.e00468.

Chen S, T Du, S Wang, D Parsons, D Wu, X Guo and D Li. 2021. Quantifying the effects of spatial-temporal variability of soil properties on crop growth in management zones within an irrigated maize field in Northwest China. Agr Water Manage 244: 106535. doi: https://doi.org/10.1016/j.agwat.2020.106535.

Intara YI, A Sapei, N Sembiring, MHB Djoefrie and Erizal. 2011. Pengaruh pemberian bahan organik pada tanah liat dan lempung berliat terhadap kemampuan mengikat air. J Ilmu Pertanian Indonesia 16: 130-135. (in Indonesian)

Johnston K, JM Ver Hoef, K Krivoruchko and N Lucas. 2001. Using ArcGIS geostatistical analyst 380: 287 p. Redlands: ESRI.

John K, SM Afu, IA Isong, EE Aki, NM Kebonye, EO Ayito, PA Chapman, MO Eyong and V Penížek. 2021. Mapping soil properties with soil-environmental covariates using geostatistics and multivariate statistics. Int J Environ Sci Te 18: 3327-3342. doi: https://doi.org/10.1007/s13762-020-03089-x.

Krisdianto A, I Musaad and I Djuuna. 2018. Metode kriging untuk interpolasi parameter kesuburan tanah di lahan pertanian Kelurahan Malawili Kabupaten Sorong. (in Indonesian).

Mousavi SR, F Sarmadian, S Dehghani, MR Sadikhani and A Taati. 2017. Evaluating inverse distance weighting and kriging methods in estimation of some physical and chemical properties of soil in Qazvin Plain. Eurasian J Soil Sci 6: 327-336. doi: https://doi.org/10.18393/ejss.311210

Oliver MA and R Webster. 2015. Basic steps in geostatistics: the variogram and kriging. Springer Cham Heidelberg New York Dordrecht London. Pp 15–42. https://link.springer.com/content/pdf/10.1007/978-3-319-15865-5.pdf

Phillips JD. 2017. Soil complexity and pedogenesis. Soil Sci 182: 117-127. doi: https://doi.org/10.1097/SS.0000000000000204

Ray P, BL Meena, and CP Nath. 2014. Management of Coastal Soils for Improving Soil Quality and Productivity Prasenjit 1: 95-99.

Respati ER, R Goejantoro and S. Wahyuningsih. 2014. Perbandingan Metode Ordinary Kriging Dan Inverse Distance Weighted Untuk Estimasi Elevasi Pada Data Topografi (Studi kasus: Topografi Wilayah FMIPA Universitas Mulawarman). Eksponensial 5: 163-170. (in Indonesian).

Roidah IS. 2013. Manfaat penggunaan pupuk organik untuk kesuburan tanah. J Bonorowo 1: 30-43. (in Indonesian) doi: https://doi.org/10.36563/bonorowo.v1i1.5.

Rozalia G, H Yasin and D Ispriyanti. 2016. Penerapan metode ordinary kriging pada pendugaan kadar NO2 di udara (studi kasus: pencemaran udara di kota semarang). J Gaussian 5: 113-121. doi: https://doi.org/10.14710/j.gauss.v5i1.11034.

Salem TM, KM Refaie, AEHEGAEL Sherif and MAM Eid. 2019. Biochar application in alkaline soil and its effect on soil and plant. Acta Agriculturae Slovenica 114: 85–96. doi: https://doi.org/10.14720/aas.2019.114.1.10.

Shit PK, GS Bhunia and R Maiti. 2016. Spatial analysis of soil properties using GIS-based geostatistics models. Modeling Earth Systems and Environment 2: 1-6. doi: https://doi.org/10.1007/s40808-016-0160-4.

Sahbeni G and B Székely. 2022. Spatial modeling of soil salinity using kriging interpolation techniques: A study case in the Great Hungarian Plain. Eurasian Journal of Soil Science 11: 102-112. doi: https://doi.org/10.18393/ejss.1013432.

Shahinzadeh N, T Babaeinejad, K Mohsenifar and N Ghanavati. 2022. Spatial variability of soil properties determined by the interpolation methods in the agricultural lands. Modeling Earth Systems and Environment 8: 1-11. doi: https://doi.org/10.1007/s40808-022-01402-w.

Syuaib MF and IW Astika. 2015. Pengembangan Model Pendugaan Kadar Hara Tanah Melalui Pengukuran Daya Hantar Listrik Tanah. J Keteknikan Pertanian 03: 1-8. doi: https://doi.org/10.19028/jtep.03.2.%25p.

Tavakkoli E, S Uddin, P Rengasamy and GK McDonald. 2022. Field applications of gypsum reduce pH and improve soil C in highly alkaline soils in southern Australia’s dryland cropping region. Soil Use Manage 38: 466-477. doi: https://doi.org/10.1111/sum.12756.

Zewd I and M Siban. 2021. The effects of alkalinity on the physical and chemical properties of soil. 3: 1-5.

Zandi S, A Ghobakhlou and P Sallis. 2011. Evaluation of spatial interpolation techniques for mapping soil pH. 19th International Congress on Modelling and Simulation. Perth Australia, pp. 1153–1159. doi: https://doi.org/10.36334/modsim.2011.C2.zandi.

Zhang Y and AE Hartemink. 2021. Quantifying short-range variation of soil texture and total carbon of a 330-ha farm. Catena 201: 105200. doi: https://doi.org/10.1016/j.catena.2021.105200.

Wicaksono KS, R Suharyadi and SH Murti. 2019. Mapping of the soil phosphorus using landform approach on apple orchard in Batu, East Java Province, Indonesia. IOP Conference Series: Earth and Environmental Science 243: 012025. doi: https://doi.org/10.1088/1755-1315/243/1/012025




DOI: http://dx.doi.org/10.5400/jts.2023.v28i2.47-56

Refbacks

  • There are currently no refbacks.


INDEXING SITE

University of OxfordColumbia University LibraryStanford Crossref EBSCO

DOAJ


Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.