Using Geostatistics for Spatial Analysis of Soil Moisture Content, Electrical Conductivity and pH at Paddy Fields
Abstract
Soil is dynamic in nature due to the presence of various internal and external processes exert on soils. This results in unique characteristics in space, both in short and long distances. Geostatistics (Kriging) is the methods for quantifying spatial variation of soil properties. This research was mainly aimed at applying geostatistics to quantify and interpolate the spatial dependance and structure of three soil properties, namey pH, EC and Soil Moisture Content (SMC). This research was conducted on paddy fields in Mlandingan Kulon Village, Situbondo Regency. Sampling was carried out on area of 9.2 Ha with 31 sample points. Normal distribution of data was found for pH and EC, whereas this was not the case for SMC. The results of analysis showed that most of the pH values were alkaline (>8), EC values were non-saline (<2 mm/cm), and SMC was low category (<20%). Strong spatial relationship was found for SMC, with the values of the percentage of nugget/sill was 0.024%. The values of Root Mean Square Error confirmed that kriging with spherical model was the best model, resulted in the RMSE of 0.5226 (pH), 0.035906 (EC) and 1.390158 (SMC).
Keywords: kriging, semivariogram, pH, EC, Soil Moisture Content
Keywords
References
AbdelRahman, M.A., Zakarya, Y.M., Metwaly, M.M. and Koubouris, G., 2020. Deciphering Soil Spatial Variability through Geostatistics and Interpolation Techniques. Sustainability, 13(1), p.194.
Bangroo, S.A., Sofi, J.A., Bhat, M.I., Mir, S.A., Mubarak, T. and Bashir, O., 2021. Quantifying spatial variability of soil properties in apple orchards of Kashmir, India, using geospatial techniques. Arabian Journal of Geosciences, 14(19), pp.1-10.
Bautista, F., 2021. Geostatistical analysis of soil properties of the karstic sub-horizontal plain of the Yucatan Peninsula. Tropical and Subtropical Agroecosystems, 24(1).
Bilonick, R.A., 1991. An introduction to applied geostatistics.
Cahyana, D., Barus, B., Mulyanto, B., Sulaeman, Y. and Huang, J., 2022. Using a fuzzy logic approach to reveal soil-landscape relationships produced by digital soil maps in the humid tropical region of East Java, Indonesia. Geoderma Regional, 28, p.e00468.
Chen, S., Du, T., Wang, S., Parsons, D., Wu, D., Guo, X. and Li, D., 2021. Quantifying the effects of spatial-temporal variability of soil properties on crop growth in management zones within an irrigated maize field in Northwest China. Agricultural Water Management, 244, p.106535.
Gunadi, S. (2002). TEKNOLOGI PEMANFAATAN LAHAN MARGINAL. Teknologi Lingkungan, 3(3), 232–236.
Intara, Y. I., Sapei, A., Erizal, Sembiring, N., & Djoefrie, M. H. B. (2011). Pengaruh Pemberian Bahan Organik Pada Tanah Liat Dan Lempung Berliat Terhadap Kemampuan Mengikat Air. Jurnal Ilmu Pertanian Indonesia, 16(2), 130–135.
Johnston, K., Ver Hoef, J. M., Krivoruchko, K., & Lucas, N. (2001). Using ArcGIS geostatistical analyst. Analysis, 300(December), 300. http://direitosminerarios.com/pdf/ESRI - Using ArcGIS Geostatistical Analyst.pdf
John, K., Afu, S.M., Isong, I.A., Aki, E.E., Kebonye, N.M., Ayito, E.O., Chapman, P.A., Eyong, M.O. and Penížek, V., 2021. Mapping soil properties with soil-environmental covariates using geostatistics and multivariate statistics. International Journal of Environmental Science and Technology, 18(11), pp.3327-3342.
Mousavi, S.R., Sarmadian, F., Dehghani, S., Sadikhani, M.R. and Taati, A., 2017. Evaluating inverse distance weighting and kriging methods in estimation of some physical and chemical properties of soil in Qazvin Plain. Eurasian Journal of Soil Science, 6(4), pp.327-336.
Oliver, M.A, R. Webster. 2015. Basic Steps in Geostatistics: The Variogram and Kriging. Springer. London. DIkutih dari Antono, T. 2017. “Pendekatan Interpolasi Spasial Ordinary Kriging Dan Robust Kriging Pada Data Pencilan (Studi Kasus Pada Data Curah Hujan Kabupaten Jember)”. SKRIPSI. Fakultas MIPA, Universitas Brawijaya Malang.
Phillips, J.D., 2017. Soil complexity and pedogenesis. Soil Science, 182(4), pp.117-127.
Ray, P., Meena, B. L., & Nath, C. P. (2014). Management of Coastal Soils for Improving Soil Quality and Productivity Prasenjit. 1(1), 95–99.
Respati, E., R. Goejantoto, dan S. Wahyuningsih. 2014. Perbandingan Metode Ordinary Kriging Dan Inverse Distance Weighted Untuk Estimasi Elevasi Pada Data Topografi (Studi Kasus: Topografi Wilayah FMIPA Universitas Mulawarman). Eksponensial, 5(2): 163-170. Dikutip dari Isaaks, Edward H. And Srivastava, R.M. 1989. Applied Geostatistics. Oxford University Press: New York.
Respatti, E., Goejantoro, R., Wahyuningsih, S., Program, M., Statistika, S., Program, S. P., & Unmul, F. (2014). Perbandingan Metode Ordinary Kriging dan Inverse Distance Weighted untuk Estimasi Elevasi Pada Data Topografi (Studi Kasus: Topografi Wilayah FMIPA Universitas Mulawarman) Comparison of Ordinary Kriging and Inverse Distance Weighted Methods for Estimation. Jurnal EKSPONENSIAL, 5(2), 163–170.
Riyandi, N., Muliawan, E., Sampurno, J., & Ishak Jumarang, M. (2016). Identifikasi Nilai Salinitas Pada Lahan Pertanian di Daerah Jungkat Berdasarkan Metode Daya Hantar Listrik (DHL). Prisma Fisika, IV(02), 69–72. https://jurnal.untan.ac.id/index.php/jpfu/article/view/15849
Roidah, I. S. (2013). Manfaat Penggunaan Pupuk Organik Untuk Kesuburan Tanah. 1(1).
Rozalia, G., Yasin, H., & Ispriyanti, D. (2016). Penerapan Metode Ordinary Kriging Pada Pendugaan Kadar NO2 di Udara. Jurnal Gaussian, 5(23), 113–121.
Salem, T. M., Refaie, K. M., Sherif, A. E. H. E. G. A. E. L., & Eid, M. A. M. (2019). Biochar application in alkaline soil and its effect on soil and plant. Acta Agriculturae Slovenica, 114(1), 85–96. https://doi.org/10.14720/aas.2019.114.1.10
Shit, P.K., Bhunia, G.S. and Maiti, R., 2016. Spatial analysis of soil properties using GIS based geostatistics models. Modeling Earth Systems and Environment, 2(2), pp.1-6.
Sahbeni, G. and Székely, B., 2022. Spatial modeling of soil salinity using kriging interpolation techniques: A study case in the Great Hungarian Plain. Eurasian Journal of Soil Science, 11(2), pp.102-112.
Shahinzadeh, N., Babaeinejad, T., Mohsenifar, K. and Ghanavati, N., 2022. Spatial variability of soil properties determined by the interpolation methods in the agricultural lands. Modeling Earth Systems and Environment, pp.1-11.
Sujinah & Jamil, A. (2016). Mekanisme Respon Tanaman Padi terhadap Cekaman Kekeringan dan Varietas Toleran. Iptek Tanaman Pangan, 11(1).
Syuaib, M. F., & Astika, I. W. (2015). Pengembangan Model Pendugaan Kadar Hara Tanah Melalui Pengukuran Daya Hantar Listrik Tanah. Jurnal Keteknikan Pertanian, 03(2), 1–8.
Tavakkoli, E., Uddin, S., Rengasamy, P., & McDonald, G. K. (2022). Field applications of gypsum reduce pH and improve soil C in highly alkaline soils in southern Australia’s dryland cropping region. Soil Use and Management, 38(1), 466–477.
https://doi.org/10.1111/sum.12756
Zewd, I., & Siban, M. (2021). The effects of alkalinity on physical and chemical properties of soil. 3(2), 1–5.
Zakaria, Y.S., Shaibu, A.G. and Baatuuwie, B.N., 2022. Spatial analysis of soil physicochemical and hydraulic properties in the Libga irrigation scheme in northern Ghana using geostatistics and GIS approach. Soil Science Annual, 73(2), p.149942.
Zandi, S., Ghobakhlou, A. and Sallis, P., 2011. Evaluation of spatial interpolation techniques for mapping soil pH.
Zhang, Y. and Hartemink, A.E., 2021. Quantifying short-range variation of soil texture and total carbon of a 330-ha farm. Catena, 201, p.105200.
Wicaksono, K.S., Suharyadi, R. and Murti, S.H., 2019, March. Mapping of the soil phosporus using landform approach on apple orchard in Batu, East Java Province, Indonesia. In IOP Conference Series: Earth and Environmental Science (Vol. 243, No. 1, p. 012025). IOP Publishing.
DOI: http://dx.doi.org/10.5400/jts.2023.v28i2.%25p
Refbacks
- There are currently no refbacks.
INDEXING SITE
This work is licensed under a Creative Commons Attribution 4.0 International License.