Spatial Simulation of The Organic Carbon Content and its Effects on the Erodibility and Soil Erosion with Universal Soil Loss Equation and Geographic Information Systems

Yagus Wijayanto, Julvia Nurlaeli Firmawati, Ika Purnamasari, Suci Ristiyana

Abstract


Universal Soil Loss Equation (USLE) and Geographical Information Systems are two spatial soil erosion analysis models because both have a spatial context. As an important factor, soil erodibility is crucial in determining soil erosion, with C-organic significantly influencing the K value. The main aim of this study is to characterize soil erodibility and soil loss based on spatial simulation of the effects of soil C-organic in a GIS environment. Research findings indicated that by simulating within a GIS environment, C-organic can affect soil erodibility and erosion. Low C-organic levels can increase soil erodibility, while high C-organic levels can decrease it. A reduction in C-organic by 10%, 20%, and 30% will increase K by 1.10%, 1.17%, and 1.21%, respectively. Conversely, adding 10%, 20%, and 30% C-organic will decrease K by 1.12%, 1.27%, and 1.46%, respectively. A 10%, 20%, and 30% increase in C-organic can reduce soil loss by 1.2%, 1.3%, and 1.5%, while a reduction in C-organic will increase soil loss by 1.1%, 1.2%, and 1.3%, respectively. A low K value indicates slight erosion, while a high K value suggests high erosion. Continuous C-organic and properly managing vegetation are necessary to maintain and improve soil quality.

Keywords


C-organic; Soil Erodibility; Soil Erosion; Spatial; USLE

Full Text:

PDF

References


Alaboz, P., Dengiz, O., Demir, S., & ªenol, H. (2021). Digital mapping of soil erodibility factors based on decision tree using geostatistical approaches in terrestrial ecosystem. CATENA, 207, 105634. https://doi.org/10.1016/j.catena.2021.105634

Belasri, A., & Lakhouili, A. (2016). Estimation of Soil Erosion Risk Using the Universal Soil Loss Equation (USLE) and Geo-Information Technology in Oued El Makhazine Watershed, Morocco. Journal of Geographic Information System, 08(01), 98–107. https://doi.org/10.4236/jgis.2016.81010

Br Purba, Y. S., Puja, I. N., & Sumarniasih, M. S. (2020). EROSION PREDICTION AND CONSERVATION PLANNING IN THE BUBUH SUB-WATERSHED, BANGLI REGENCY. Water Conservation and Management, 4(2), 103–105. https://doi.org/10.26480/wcm.02.2020.103.105

Cardinael, R., Chevallier, T., Cambou, A., Béral, C., Barthès, B. G., Dupraz, C., Durand, C., Kouakoua, E., & Chenu, C. (2017). Increased soil organic carbon stocks under agroforestry: A survey of six different sites in France. Agriculture, Ecosystems & Environment, 236, 243–255. https://doi.org/10.1016/j.agee.2016.12.011

Chertov, O., Shaw, C., Shashkov, M., Komarov, A., Bykhovets, S., Shanin, V., Grabarnik, P., Frolov, P., Kalinina, O., Priputina, I., & Zubkova, E. (2017). Romul_Hum model of soil organic matter formation coupled with soil biota activity. III. Parameterisation of earthworm activity. Ecological Modelling, 345, 140–149. https://doi.org/10.1016/j.ecolmodel.2016.06.013

De Lima, A. F. L., Campos, M. C. C., Martins, T. S., Silva, G. A., Brito, W. B. M., Dos Santos, L. A. C., De Oliveira, I. A., & Da Cunha, J. M. (2022). Soil chemical attributes in areas under conversion from forest to pasture in southern Brazilian Amazon. Scientific Reports, 12(1), 22555. https://doi.org/10.1038/s41598-022-25406-9

Deiss, L., Franzluebbers, A. J., Amoozegar, A., Hesterberg, D., Polizzotto, M., & Cubbage, F. W. (2017). Soil Carbon Fractions from an Alluvial Soil Texture Gradient in North Carolina. Soil Science Society of America Journal, 81(5), 1096–1106. https://doi.org/10.2136/sssaj2016.09.0304

Efthimiou, N. (2020). The new assessment of soil erodibility in Greece. Soil and Tillage Research, 204, 104720. https://doi.org/10.1016/j.still.2020.104720

Fiantis, D., Rudiyanto, Ginting, F. I., Utami, S. R., Sukarman, Anda, M., Jeon, S. H., & Minasny, B. (2022). Sustaining the productivity and ecosystem services of soils in Indonesia. Geoderma Regional, 28, e00488. https://doi.org/10.1016/j.geodrs.2022.e00488

Georgiou, K., Jackson, R. B., Vindušková, O., Abramoff, R. Z., Ahlström, A., Feng, W., Harden, J. W., Pellegrini, A. F. A., Polley, H. W., Soong, J. L., Riley, W. J., & Torn, M. S. (2022). Global stocks and capacity of mineral-associated soil organic carbon. Nature Communications, 13(1), 3797. https://doi.org/10.1038/s41467-022-31540-9

Huang, X., Lin, L., Ding, S., Tian, Z., Zhu, X., Wu, K., & Zhao, Y. (2022). Characteristics of Soil Erodibility K Value and Its Influencing Factors in the Changyan Watershed, Southwest Hubei, China. Land, 11(1), 134. https://doi.org/10.3390/land11010134

Injiliana, L., Widiastuti, T., & Riyono, J. N. (2021). Erodibilitas Tanah (K) pada berbagai Tutupan Lahan di Desa Baru Kecamatan Silat Hilir Kabupaten Kapuas Hulu. Jurnal Hutan Lestari, 8(4), 773. https://doi.org/10.26418/jhl.v8i4.44323

Kirkels, F. M. S. A., Cammeraat, L. H., & Kuhn, N. J. (2014). The fate of soil organic carbon upon erosion, transport and deposition in agricultural landscapes—A review of different concepts. Geomorphology, 226, 94–105. https://doi.org/10.1016/j.geomorph.2014.07.023

Kriuchkov, N. R., & Makarov, O. A. (2023). Modeling Dynamics of Soil Erosion by Water Due to Soil Organic Matter Change (1980–2020) in the Steppe Zone of Russia. Agronomy, 13(10), 2527. https://doi.org/10.3390/agronomy13102527

Li, Z., Liu, C., Dong, Y., Chang, X., Nie, X., Liu, L., Xiao, H., Lu, Y., & Zeng, G. (2017). Response of soil organic carbon and nitrogen stocks to soil erosion and land use types in the Loess hilly–gully region of China. Soil and Tillage Research, 166, 1–9. https://doi.org/10.1016/j.still.2016.10.004

Liu, M., Han, G., Li, X., Zhang, S., Zhou, W., & Zhang, Q. (2020). Effects of Soil Properties on K Factor in the Granite and Limestone Regions of China. International Journal of Environmental Research and Public Health, 17(3), 801. https://doi.org/10.3390/ijerph17030801

Mishra, P. K., Rai, A., Abdelrahman, K., Rai, S. C., & Tiwari, A. (2022). Land Degradation, Overland Flow, Soil Erosion, and Nutrient Loss in the Eastern Himalayas, India. Land, 11(2), 179. https://doi.org/10.3390/land11020179

Nasjono, J., Hangge, E., & Kelen, M. (2022). Metode Erosivitas Hujan dan Model Sediment Delivery Ratio untuk Prakiraan Erosi dan Sedimentasi pada Bendungan Tilong. Jurnal Teknik Sumber Daya Air, 1(1), 53–64. https://doi.org/10.56860/jtsda.v1i1.15

Othmani, O., Khanchoul, K., Boubehziz, S., Bouguerra, H., Benslama, A., & Navarro-Pedreño, J. (2023). Spatial Variability of Soil Erodibility at the Rhirane Catchment Using Geostatistical Analysis. Soil Systems, 7(2), 32. https://doi.org/10.3390/soilsystems7020032

Padarian, J., Stockmann, U., Minasny, B., & McBratney, A. B. (2022). Monitoring changes in global soil organic carbon stocks from space. Remote Sensing of Environment, 281, 113260. https://doi.org/10.1016/j.rse.2022.113260

Panagos, P., Borrelli, P., Matthews, F., Liakos, L., Bezak, N., Diodato, N., & Ballabio, C. (2022). Global rainfall erosivity projections for 2050 and 2070. Journal of Hydrology, 610, 127865. https://doi.org/10.1016/j.jhydrol.2022.127865

Pereira, P., Bogunovic, I., Muñoz-Rojas, M., & Brevik, E. C. (2018). Soil ecosystem services, sustainability, valuation and management. Current Opinion in Environmental Science & Health, 5, 7–13. https://doi.org/10.1016/j.coesh.2017.12.003

Pham, T. G., Degener, J., & Kappas, M. (2018). Integrated universal soil loss equation (USLE) and Geographical Information System (GIS) for soil erosion estimation in A Sap basin: Central Vietnam. International Soil and Water Conservation Research, 6(2), 99–110. https://doi.org/10.1016/j.iswcr.2018.01.001

Quijano, L., Van Oost, K., Nadeu, E., Gaspar, L., & Navas, A. (2017). Modelling the Effect of Land Management Changes on Soil Organic Carbon Stocks in a Mediterranean Cultivated Field. Land Degradation & Development, 28(2), 515–523. https://doi.org/10.1002/ldr.2637

Radziuk, H., & Œwitoniak, M. (2021). Soil erodibility factor (K) in soils under varying stages of truncation. Soil Science Annual. https://doi.org/10.37501/soilsa/134621

Ramesh, T., Bolan, N. S., Kirkham, M. B., Wijesekara, H., Kanchikerimath, M., Srinivasa Rao, C., Sandeep, S., Rinklebe, J., Ok, Y. S., Choudhury, B. U., Wang, H., Tang, C., Wang, X., Song, Z., & Freeman Ii, O. W. (2019). Soil organic carbon dynamics: Impact of land use changes and management practices: A review. In Advances in Agronomy (Vol. 156, pp. 1–107). Elsevier. https://doi.org/10.1016/bs.agron.2019.02.001

Rehman, M. A., Mat Desa, S., Abd Rahman, N., Mohd, M. S. F., Aminuddin, N. A. S., Mohd Taib, A., A. Karim, O., Awang, S., & Wan Mohtar, W. H. M. (2022). Correlation between soil erodibility and light penetrometer blows: A case study in Sungai Langat, Malaysia. Physics and Chemistry of the Earth, Parts A/B/C, 128, 103262. https://doi.org/10.1016/j.pce.2022.103262

Salih, H. O., Keya, D. R., & Mohammed, K. M. (2023). Integrated use of USLE, GIS, and remote sensing for soil erosion mapping in Erbil Basin. Polytechnic Journal, 13(2). https://doi.org/10.59341/2707-7799.1716

Selmy, S. A. H., Abd Al-Aziz, S. H., Jiménez-Ballesta, R., García-Navarro, F. J., & Fadl, M. E. (2021). Modeling and Assessing Potential Soil Erosion Hazards Using USLE and Wind Erosion Models in Integration with GIS Techniques: Dakhla Oasis, Egypt. Agriculture, 11(11), 1124. https://doi.org/10.3390/agriculture11111124

Tsegaye, K., Addis, H. K., & Hassen, E. E. (2019). Soil Erosion Impact Assessment using USLE/GIS Approaches to Identify High Erosion Risk Areas in the Lowland Agricultural Watershed of Blue Nile Basin, Ethiopia. International Annals of Science, 8(1), 120–129. https://doi.org/10.21467/ias.8.1.120-129

Universitas Sumatera Utara, Jhon, A. H., Rauf, A., Sabrina, T., & Nyak Akoeb, E. (2020). Soil Macrofauna as Bioindicator on Aek Loba Palm Oil Plantation Land. Sriwijaya Journal of Environment, 5(2), 111–119. https://doi.org/10.22135/sje.2020.5.2.111-119

Xiao, H., Li, Z., Chang, X., Huang, B., Nie, X., Liu, C., Liu, L., Wang, D., & Jiang, J. (2018). The mineralization and sequestration of organic carbon in relation to agricultural soil erosion. Geoderma, 329, 73–81. https://doi.org/10.1016/j.geoderma.2018.05.018

Xiao, L., Xue, S., Liu, G., & Zhang, C. (2014). Fractal features of soil profiles under different land use patterns on the Loess Plateau, China. Journal of Arid Land, 6(5), 550–560. https://doi.org/10.1007/s40333-014-0023-7

Yang, X., Yang, Q., & Lu, Y. (2019). Predicting Annual Mean Profile Soil Moisture from Soil Particle Size Distributions on a Small Scale Hillslope on the Chinese Loess Plateau. Soil Science Society of America Journal, 83(6), 1648–1654. https://doi.org/10.2136/sssaj2019.05.0145




DOI: http://dx.doi.org/10.5400/jts.2025.v30i1.25-35

Refbacks

  • There are currently no refbacks.


INDEXING SITE

University of OxfordColumbia University LibraryStanford Crossref EBSCO

DOAJ


Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.