Characterization and Classification of Soils in Landslide Residual Zones to Estimate the Presence of Shallow Slip Plane
Abstract
Keywords
Full Text:
PDFReferences
Bhattacharyya, T., Chandran, P., Ray, S. K., & Pal, D. K. (2015). Soil Classification Following the US Taxonomy: An Indian Commentary. Soil Horizons, 56(4), 0. https://doi.org/10.2136/sh14-08-0011
Bockheim, J. G. (2014). Soil Geography of the USA: A Diagnostic-Horizon Approach. Springer International Publishing. https://doi.org/10.1007/978-3-319-06668-4
Bockheim, J. G., & Gennadiyev, A. N. (2000). The role of soil-forming processes in the definition of taxa in Soil Taxonomy and the World Soil Reference Base. Geoderma, 95(1–2), 53–72. https://doi.org/10.1016/S0016-7061(99)00083-X
Cheng, C.-H., Hsiao, S.-C., Huang, Y.-S., Hung, C.-Y., Pai, C.-W., Chen, C.-P., & Menyailo, O. V. (2016). Landslide-induced changes of soil physicochemical properties in Xitou, Central Taiwan. Geoderma, 265, 187–195. https://doi.org/10.1016/j.geoderma.2015.11.028
Gerasimova, M., & Konyushkov, D. (2023). History and principles of soil classification. In Encyclopedia of Soils in the Environment (pp. 185–196). Elsevier. https://doi.org/10.1016/B978-0-12-822974-3.00133-6
Glenn, N. F., Streutker, D. R., Chadwick, D. J., Thackray, G. D., & Dorsch, S. J. (2006). Analysis of LiDAR-derived topographic information for characterizing and differentiating landslide morphology and activity. Geomorphology, 73(1–2), 131–148. https://doi.org/10.1016/j.geomorph.2005.07.006
Hopkins, D. G., & Franzen, D. W. (2003). Argillic Horizons in Stratified Drift: Luverne End Moraine, Eastern North Dakota. Soil Science Society of America Journal, 67(6), 1790–1796. https://doi.org/10.2136/sssaj2003.1790
Lalitha, M., Kumar, K. S. A., Nair, K. M., Dharumarajan, S., Koyal, A., Khandal, S., Kaliraj, S., & Hegde, R. (2021). Evaluating pedogenesis and soil Atterberg limits for inducing landslides in the Western Ghats, Idukki District of Kerala, South India. Natural Hazards, 106(1), 487–507. https://doi.org/10.1007/s11069-020-04472-0
Lee, C. F., Li, J., Xu, Z. W., & Dai, F. C. (2001). Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environmental Geology, 40(3), 381–391. https://doi.org/10.1007/s002540000163
Liu, Y., Deng, Z., & Wang, X. (2021). The Effects of Rainfall, Soil Type and Slope on the Processes and Mechanisms of Rainfall-Induced Shallow Landslides. Applied Sciences, 11(24), 11652. https://doi.org/10.3390/app112411652
Luino, F., De Graff, J., Biddoccu, M., Faccini, F., Freppaz, M., Roccati, A., Ungaro, F., D’Amico, M., & Turconi, L. (2022). The Role of Soil Type in Triggering Shallow Landslides in the Alps (Lombardy, Northern Italy). Land, 11(8), 1125. https://doi.org/10.3390/land11081125
Marfai, M. A., King, L., Singh, L. P., Mardiatno, D., Sartohadi, J., Hadmoko, D. S., & Dewi, A. (2008). Natural hazards in Central Java Province, Indonesia: An overview. Environmental Geology, 56(2), 335–351. https://doi.org/10.1007/s00254-007-1169-9
Noviyanto, A., Sartohadi, J., & Purwanto, B. H. (2020). The distribution of soil morphological characteristics for landslide-impacted Sumbing Volcano, Central Java—Indonesia. Geoenvironmental Disasters, 7(1), 25. https://doi.org/10.1186/s40677-020-00158-8
Palmer, A. (2005). INCEPTISOLS. In Encyclopedia of Soils in the Environment (pp. 248–254). Elsevier. https://doi.org/10.1016/B0-12-348530-4/00027-8
Pulungan, N. A., & Sartohadi, J. (2017). Variability of Soil Development in Hilly Region, Bogowonto Catchment, Java, Indonesia. International Journal of Soil Science, 13(1), 1–8. https://doi.org/10.3923/ijss.2018.1.8
Purwanto, S., Gani, R. A., & Suryani, E. (2020). Characteristics of Ultisols derived from basaltic andesite materials and their association with old volcanic landforms in Indonesia. SAINS TANAH - Journal of Soil Science and Agroclimatology, 17(2), 135. https://doi.org/10.20961/stjssa.v17i2.38301
Sartohadi, J., Harlin Jennie Pulungan, N. A., Nurudin, M., & Wahyudi, W. (2018). The Ecological Perspective of Landslides at Soils with High Clay Content in the Middle Bogowonto Watershed, Central Java, Indonesia. Applied and Environmental Soil Science, 2018, 1–9. https://doi.org/10.1155/2018/2648185
Skorupa, A. L. A., Silva, S. H. G., Poggere, G. C., Tassinari, D., Pinto, L. C., Zinn, Y. L., & Curi, N. (2017). Similar Soils but Different Soil-Forming Factors: Converging Evolution of Inceptisols in Brazil. Pedosphere, 27(4), 747–757. https://doi.org/10.1016/S1002-0160(17)60443-0
Thakur, V., Nordal, S., & Grimstad, G. (2006). Phenomenological issues related to strain localization in sensitive clays. Geotechnical & Geological Engineering, 24(6), 1729. https://doi.org/10.1007/s10706-005-5818-z
Urushadze, T., Blum, W., & Kvrivishvili, T. (2016). Classification of soils on sediments, sedimentary and andesitic rocks in Georgia by the WRB system. Annals of Agrarian Science, 14(4), 351–355. https://doi.org/10.1016/j.aasci.2016.09.015
Uyeturk, C. E., Huvaj, N., Bayraktaroglu, H., & Huseyinpasaoglu, M. (2020). Geotechnical characteristics of residual soils in rainfall-triggered landslides in Rize, Turkey. Engineering Geology, 264, 105318. https://doi.org/10.1016/j.enggeo.2019.105318
White, A. F. (2003). Natural Weathering Rates of Silicate Minerals. In Treatise on Geochemistry (pp. 133–168). Elsevier. https://doi.org/10.1016/B0-08-043751-6/05076-3
Wida, W. A., Maas, A., & Sartohadi, J. (2019). Pedogenesis of Mt. Sumbing Volcanic Ash above The Alteration Clay Layer in The Formation of Landslide Susceptible Soils in Bompon Sub-Watershed. Ilmu Pertanian (Agricultural Science), 4(1), 15. https://doi.org/10.22146/ipas.41893
Xin, P., Liu, Z., Wu, S., Liang, C., & Lin, C. (2018). Rotational–translational landslides in the neogene basins at the northeast margin of the Tibetan Plateau. Engineering Geology, 244, 107–115. https://doi.org/10.1016/j.enggeo.2018.07.024
Yalcin, A. (2007). The effects of clay on landslides: A case study. Applied Clay Science, 38(1–2), 77–85. https://doi.org/10.1016/j.clay.2007.01.007
Yalcin, A. (2011). A geotechnical study on the landslides in the Trabzon Province, NE, Turkey. Applied Clay Science, 52(1–2), 11–19. https://doi.org/10.1016/j.clay.2011.01.015
Yanai, J., Omoto, T., Nakao, A., Koyama, K., Hartono, A., & Anwar, S. (2014). Evaluation of nitrogen status of agricultural soils in Java, Indonesia. Soil Science and Plant Nutrition, 60(2), 188–195. https://doi.org/10.1080/00380768.2014.891925
Yu, X., Zhang, K., Song, Y., Jiang, W., & Zhou, J. (2021). Study on landslide susceptibility mapping based on rock–soil characteristic factors. Scientific Reports, 11(1), 15476. https://doi.org/10.1038/s41598-021-94936-5
Zhang, B., Yang, Y., & Zepp, H. (2004). Effect of vegetation restoration on soil and water erosion and nutrient losses of a severely eroded clayey Plinthudult in southeastern China. CATENA, 57(1), 77–90. https://doi.org/10.1016/j.catena.2003.07.001
Zhang, Z., Wang, T., Wu, S., Tang, H., & Liang, C. (2018). Dynamics characteristic of red clay in a deep-seated landslide, Northwest China: An experiment study. Engineering Geology, 239, 254–268. https://doi.org/10.1016/j.enggeo.2018.04.005
DOI: http://dx.doi.org/10.5400/jts.2025.v30i1.53-60
Refbacks
- There are currently no refbacks.
INDEXING SITE
This work is licensed under a Creative Commons Attribution 4.0 International License.