Study of the Quality of Biogeotextile Materials as Semi-Organic Mulch on Saline Land
Abstract
Keywords
Full Text:
PDFReferences
Andrianto, F., Bintoro, A., & Yowono, S. B. (2015). Kata kunci/ : Laju dekomposisi, mangrove, produksi, serasah. Jurnal Sylva Lestari, 3(1), 9–20.
Azim, K., Soudi, B., Boukhari, S., Perissol, C., Roussos, S., & Thami Alami, I. (2018). Composting parameters and compost quality: a literature review. Organic Agriculture, 8(2), 141–158. https://doi.org/10.1007/s13165-017-0180-z
Bains, S., Kaur, R., Sethi, M., Gupta, M., & Kaur, T. (2021). Rice straw mulch mats – biodegradable alternative to herbicides in papaya. Indian Journal of Weed Science, 53(3), 275–280. https://doi.org/10.5958/0974-8164.2021.00050.2
Baldrian, P. (2017). Microbial activity and the dynamics of ecosystem processes in forest soils. Current Opinion in Microbiology, 37(Box 1), 128–134. https://doi.org/10.1016/j.mib.2017.06.008
Biswas, T., & Kole, S. C. (2017). Soil Organic Matter and Microbial Role in Plant Productivity and Soil Fertility. Microorganisms for Sustainability, 4, 219–238. https://doi.org/10.1007/978-981-10-7380-9_10
Chen, Y., Chen, S., Zhang, B., Ma, X., Liu, X., Huang, Y., & Zhang, Y. (2023). Divergent Decomposition Patterns of Leaf Litter and Fine Roots from an Urban Forest in Mid-Subtropical China. Forests, 14(9), 1–14. https://doi.org/10.3390/f14091741
Dhaliwal, S. S., Naresh, R. K., Mandal, A., Singh, R., & Dhaliwal, M. K. (2019). Dynamics and transformations of micronutrients in agricultural soils as influenced by organic matter build-up: A review. Environmental and Sustainability Indicators, 1–2(May), 100007. https://doi.org/10.1016/j.indic.2019.100007
El-mrini, S., Aboutayeb, R., & Zouhri, A. (2022). Effect of initial C/N ratio and turning frequency on quality of final compost of turkey manure and olive pomace. Journal of Engineering and Applied Science, 69(1), 1–20. https://doi.org/10.1186/s44147-022-00092-6
Fang, S., Xie, B., Liu, D., & Liu, J. (2011). Effects of mulching materials on nitrogen mineralization, nitrogen availability and poplar growth on degraded agricultural soil. New Forests, 41(2), 147–162. https://doi.org/10.1007/s11056-010-9217-9
Haribowo, R., Asmaranto, R., Kusuma, L. T. W. N., & Amrina, B. G. (2022). Assessment of Mulch Material Effect on Surface Runoff, Soil Loss, and Water Quality in an Agricultural Region. Agrivita, 44(3), 459–469. https://doi.org/10.17503/agrivita.v41i0.3727.
Iqbal, R., Aown, M., Raza, S., Valipour, M., Saleem, M. F., Zaheer, M. S., Ahmad, S., Toleikiene, M., Haider, I., Aslam, M. U., & Nazar, M. A. (2020). Potential agricultural and environmental benefits of mulches — a review. 3.
Karolinoerita, V., & Annisa, W. (2020). Salinisasi Lahan dan Permasalahannya di Indonesia. Jurnal Sumberdaya Lahan, 14(2), 91. https://doi.org/10.21082/jsdl.v14n2.2020.91-99
Kautsar, V., Tang, S., Kimani, S. M., Tawaraya, K., Wu, J., Toriyama, K., Kobayashi, K., & Cheng, W. (2022). Carbon decomposition and nitrogen mineralization of foxtail and milk vetch incorporated into paddy soils for different durations of organic farming. Soil Science and Plant Nutrition, 68(1), 158–166. https://doi.org/10.1080/00380768.2021.2024424
Khaopakro, S., Theerakitthanakul, K., Limchareon, S., Tohdam, S., Yodruk, A., & Krainara, P. (2020). Anatomical and Fiber Characteristics of Pandanus amaryllifolias Roxb. And P. odorifer (Forssk.) Kuntze (Pandanaceae) Leaves. Burapha Science Journal, 151–167.
Kusmana, C., & Yentiana, R. A. (2021). Laju Dekomposisi Serasah Daun Shorea guiso di Hutan Penelitian Dramaga, Bogor, Jawa Barat. Journal of Tropical Silviculture, 12(3), 172–177. https://doi.org/10.29244/j-siltrop.12.3.172-177
Lestariningsih, I. D., Widianto, W., Agustina, C., Sudarto, S., & Kurniawan, S. (2018). Relationship between land degradation, biophysical and social factors in Lekso Watershed, East Java, Indonesia. Journal of Degraded and Mining Lands Management, 5(3), 1283.
Nakhone, L. N., & Tabatabai, M. A. (2008). Nitrogen mineralization of leguminous crops in soils. Journal of Plant Nutrition and Soil Science, 171(2), 231–241. https://doi.org/10.1002/jpln.200625162
Nasim, N., Behera, J. K., Sandeep, I. S., RamaRao, V. V., Kar, B., Mishra, A., Nayak, S., & Mohanty, S. (2018). Phytochemical analysis of flower from Pandanus odorifer (Forssk.) Kuntze for industrial application. Natural Product Research, 32(20), 2494–2497. https://doi.org/10.1080/14786419.2017.1422184
Nasim, N., Sandeep, I. S., & Mohanty, S. (2022). Plant-derived natural products for drug discovery: current approaches and prospects. The Nucleus, 65(3), 399–411. https://doi.org/10.1007/s13237-022-00405-3
Osok, R. M., Talakua, S. M., & Supriadi, D. (2018). Penetapan Kelas Kemampuan Lahan Dan Arahan Rehabilitasi Lahan Das Wai Batu Merah Kota Ambon Provinsi Maluku. Agrologia, 7(1). https://doi.org/10.30598/a.v7i1.355
Pérez, J., Ferreira, V., Graça, M. A. S., & Boyero, L. (2021). Litter Quality Is a Stronger Driver than Temperature of Early Microbial Decomposition in Oligotrophic Streams: a Microcosm Study. Microbial Ecology, 82(4), 897–908. https://doi.org/10.1007/s00248-021-01858-w.
Prambauer, M., Wendeler, C., Weitzenböck, J., & Burgstaller, C. (2019). Biodegradable geotextiles – An overview of existing and potential materials. Geotextiles and Geomembranes, 47(1), 48–59. https://doi.org/10.1016/j.geotexmem.2018.09.006
Ramos, S. M., Graça, M. A. S., & Ferreira, V. (2021). A comparison of decomposition rates and biological colonization of leaf litter from tropical and temperate origins. Aquatic Ecology, 55(3), 925–940. https://doi.org/10.1007/s10452-021-09872-3
Sahupala, A., Siahaya, T. E., Seipala, B. B., Siahaya, L., Pelupessy, L., & Komul, Y. D. (2021). Species of pandan (Pandanus sp) in Gorom Island, East Seram Regency. IOP Conference Series: Earth and Environmental Science, 883(1). https://doi.org/10.1088/1755-1315/883/1/012009
Su, Z., Zhu, X., Wang, Y., Mao, S., & Shangguan, Z. (2022). Litter C and N losses at different decomposition stages of Robinia pseudoacacia: The weaker effects of soil enzyme activities compared with those of litter quality and the soil environment. Frontiers in Environmental Science, 10(November), 1–16. https://doi.org/10.3389/fenvs.2022.956309
Tanasã, F., Nechifor, M., Ignat, M. E., & Teacã, C. A. (2022). Geotextiles—A Versatile Tool for Environmental Sensitive Applications in Geotechnical Engineering. Textiles, 2(2), 189–208. https://doi.org/10.3390/textiles2020011
Teli, M. D., & Jadhav, A. C. (2017). Mechanical Extraction and Physical Characterization of Pandanus Odorifer Lignocellulosic Fibre. International Journal of Science and Research (IJSR), 6(1), 1370–1374. https://doi.org/10.21275/art20164365
Timsina, J. (2018). Can organic sources of nutrients increase crop yields to meet global food demand? Agronomy, 8(10), 1–20. https://doi.org/10.3390/agronomy8100214
Xu, D., Qiu, X., & Xu, Z. (2017). Effect of water hyacinth mulch on soil temperature, water content and maize yield (Zea mays L.) in southeast China. Environmental Engineering and Management Journal, 16(1), 85–91. https://doi.org/10.30638/eemj.2017.010
Xu, M. ping, Zhi, R. chen, Jian, J. nan, Feng, Y. zhong, Han, X. hui, & Zhang, W. (2023). Changes in Soil Organic C Fractions and C Pool Stability Are Mediated by C-Degrading Enzymes in Litter Decomposition of Robinia pseudoacacia Plantations. Microbial Ecology, 86(2), 1189–1199. https://doi.org/10.1007/s00248-022-02113-6
Yan, J., Wang, L., Hu, Y., Tsang, Y. F., Zhang, Y., Wu, J., Fu, X., & Sun, Y. (2018). Plant litter composition selects different soil microbial structures and in turn drives different litter decomposition pattern and soil carbon sequestration capability. Geoderma, 319(August 2017), 194–203. https://doi.org/10.1016/j.geoderma.2018.01.009.
Yang, Y., Yang, J., Zhao, T., Huang, X., & Zhao, P. (2016). Ecological restoration of highway slope by covering with straw-mat and seeding with grass-legume mixture. Ecological Engineering, 90, 68–76. https://doi.org/10.1016/j.ecoleng.2016.01.052
Zhang, X., Qian, Y., & Cao, C. (2015). Effects of straw mulching on maize photosynthetic characteristics and rhizosphere soil micro-ecological environment. Chilean Journal of Agricultural Research, 75(4), 481–487. https://doi.org/10.4067/S0718-58392015000500014
Zhao, L., Jia, K., Liu, X., Li, J., & Xia, M. (2023). Geography and Sustainability Assessment of land degradation in Inner Mongolia between 2000 and 2020 based on remote sensing data. Geography and Sustainability, 4(2), 100–111. https://doi.org/10.1016/j.geosus.2023.01.003
Zhou, X., Dong, K., Tang, Y., Huang, H., Peng, G., & Wang, D. (2023). Research Progress on the Decomposition Process of Plant Litter in Wetlands: A Review. Water (Switzerland), 15(18), 1–15. https://doi.org/10.3390/w15183246
Zhou, Z., Li, Z., Chen, K., Chen, Z., Zeng, X., Yu, H., Guo, S., Shangguan, Y., Chen, Q., Fan, H., Tu, S., He, M., & Qin, Y. (2021). Changes in soil physicochemical properties and bacterial communities at different soil depths after long-term straw mulching under a no-till system. Soil, 7(2), 595–609. https://doi.org/10.5194/soil-7-595-2021
DOI: http://dx.doi.org/10.5400/jts.2025.v30i2.125-135
Refbacks
- There are currently no refbacks.
INDEXING SITE
This work is licensed under a Creative Commons Attribution 4.0 International License.