Study of the Quality of Biogeotextile Materials as Semi-Organic Mulch on Saline Land

Fitri Wijayanti, Maroeto Maroeto, Safira Riska Lestari, Chosa zahro fatiha, Dinna Hadi Sholikah, Winih Sekaringtyas Ramadhani

Abstract


Degraded land affects almost all ecosystems and can harm the progress and quality of human life, so it needs attention. Saline soil is a land degradation with high salt content that causes toxic effects, increases root osmotic pressure, and inhibits plant growth. One solution is using organic mulch processed into biogeotextiles because it can provide solutions for erosion control and soil stabilization while minimizing negative impacts on the ecosystem. This research was conducted from May to August 2023 in the experimental garden of the Faculty of Agriculture UPN ‘Veteran’ East Java. This study used a group randomized design with one factor,  the type of geotextile material consisting of reed grass (RG), straw (ST), pandanus odorifer (PO), and sugarcane bagasse (SB). This research was conducted with a litterbox of 20x20 cm filled with 100 g of biogeotextile material. The results obtained show that pandanus odorifer biogeotextile material is the best biogeotextile material because it can last a long time on the soil surface, but can still be adequately mineralized, according to the results obtained, reducing the C/N ratio and C-Organic but increasing total nitrogen. Decomposition is closely related to the materials’ quality rather than external factors. The quality of the material, namely lignin, organic carbon, C/N ratio, and nitrogen, influences the decomposition process. Furthermore, this technology can be applied to improve soil productivity and to keep soil healthy.

Keywords


Biogeotextile; degradation; saline; soil

Full Text:

PDF

References


Andrianto, F., Bintoro, A., & Yowono, S. B. (2015). Kata kunci/ : Laju dekomposisi, mangrove, produksi, serasah. Jurnal Sylva Lestari, 3(1), 9–20.

Azim, K., Soudi, B., Boukhari, S., Perissol, C., Roussos, S., & Thami Alami, I. (2018). Composting parameters and compost quality: a literature review. Organic Agriculture, 8(2), 141–158. https://doi.org/10.1007/s13165-017-0180-z

Bains, S., Kaur, R., Sethi, M., Gupta, M., & Kaur, T. (2021). Rice straw mulch mats – biodegradable alternative to herbicides in papaya. Indian Journal of Weed Science, 53(3), 275–280. https://doi.org/10.5958/0974-8164.2021.00050.2

Baldrian, P. (2017). Microbial activity and the dynamics of ecosystem processes in forest soils. Current Opinion in Microbiology, 37(Box 1), 128–134. https://doi.org/10.1016/j.mib.2017.06.008

Biswas, T., & Kole, S. C. (2017). Soil Organic Matter and Microbial Role in Plant Productivity and Soil Fertility. Microorganisms for Sustainability, 4, 219–238. https://doi.org/10.1007/978-981-10-7380-9_10

Chen, Y., Chen, S., Zhang, B., Ma, X., Liu, X., Huang, Y., & Zhang, Y. (2023). Divergent Decomposition Patterns of Leaf Litter and Fine Roots from an Urban Forest in Mid-Subtropical China. Forests, 14(9), 1–14. https://doi.org/10.3390/f14091741

Dhaliwal, S. S., Naresh, R. K., Mandal, A., Singh, R., & Dhaliwal, M. K. (2019). Dynamics and transformations of micronutrients in agricultural soils as influenced by organic matter build-up: A review. Environmental and Sustainability Indicators, 1–2(May), 100007. https://doi.org/10.1016/j.indic.2019.100007

El-mrini, S., Aboutayeb, R., & Zouhri, A. (2022). Effect of initial C/N ratio and turning frequency on quality of final compost of turkey manure and olive pomace. Journal of Engineering and Applied Science, 69(1), 1–20. https://doi.org/10.1186/s44147-022-00092-6

Fang, S., Xie, B., Liu, D., & Liu, J. (2011). Effects of mulching materials on nitrogen mineralization, nitrogen availability and poplar growth on degraded agricultural soil. New Forests, 41(2), 147–162. https://doi.org/10.1007/s11056-010-9217-9

Haribowo, R., Asmaranto, R., Kusuma, L. T. W. N., & Amrina, B. G. (2022). Assessment of Mulch Material Effect on Surface Runoff, Soil Loss, and Water Quality in an Agricultural Region. Agrivita, 44(3), 459–469. https://doi.org/10.17503/agrivita.v41i0.3727.

Iqbal, R., Aown, M., Raza, S., Valipour, M., Saleem, M. F., Zaheer, M. S., Ahmad, S., Toleikiene, M., Haider, I., Aslam, M. U., & Nazar, M. A. (2020). Potential agricultural and environmental benefits of mulches — a review. 3.

Karolinoerita, V., & Annisa, W. (2020). Salinisasi Lahan dan Permasalahannya di Indonesia. Jurnal Sumberdaya Lahan, 14(2), 91. https://doi.org/10.21082/jsdl.v14n2.2020.91-99

Kautsar, V., Tang, S., Kimani, S. M., Tawaraya, K., Wu, J., Toriyama, K., Kobayashi, K., & Cheng, W. (2022). Carbon decomposition and nitrogen mineralization of foxtail and milk vetch incorporated into paddy soils for different durations of organic farming. Soil Science and Plant Nutrition, 68(1), 158–166. https://doi.org/10.1080/00380768.2021.2024424

Khaopakro, S., Theerakitthanakul, K., Limchareon, S., Tohdam, S., Yodruk, A., & Krainara, P. (2020). Anatomical and Fiber Characteristics of Pandanus amaryllifolias Roxb. And P. odorifer (Forssk.) Kuntze (Pandanaceae) Leaves. Burapha Science Journal, 151–167.

Kusmana, C., & Yentiana, R. A. (2021). Laju Dekomposisi Serasah Daun Shorea guiso di Hutan Penelitian Dramaga, Bogor, Jawa Barat. Journal of Tropical Silviculture, 12(3), 172–177. https://doi.org/10.29244/j-siltrop.12.3.172-177

Lestariningsih, I. D., Widianto, W., Agustina, C., Sudarto, S., & Kurniawan, S. (2018). Relationship between land degradation, biophysical and social factors in Lekso Watershed, East Java, Indonesia. Journal of Degraded and Mining Lands Management, 5(3), 1283.

Nakhone, L. N., & Tabatabai, M. A. (2008). Nitrogen mineralization of leguminous crops in soils. Journal of Plant Nutrition and Soil Science, 171(2), 231–241. https://doi.org/10.1002/jpln.200625162

Nasim, N., Behera, J. K., Sandeep, I. S., RamaRao, V. V., Kar, B., Mishra, A., Nayak, S., & Mohanty, S. (2018). Phytochemical analysis of flower from Pandanus odorifer (Forssk.) Kuntze for industrial application. Natural Product Research, 32(20), 2494–2497. https://doi.org/10.1080/14786419.2017.1422184

Nasim, N., Sandeep, I. S., & Mohanty, S. (2022). Plant-derived natural products for drug discovery: current approaches and prospects. The Nucleus, 65(3), 399–411. https://doi.org/10.1007/s13237-022-00405-3

Osok, R. M., Talakua, S. M., & Supriadi, D. (2018). Penetapan Kelas Kemampuan Lahan Dan Arahan Rehabilitasi Lahan Das Wai Batu Merah Kota Ambon Provinsi Maluku. Agrologia, 7(1). https://doi.org/10.30598/a.v7i1.355

Pérez, J., Ferreira, V., Graça, M. A. S., & Boyero, L. (2021). Litter Quality Is a Stronger Driver than Temperature of Early Microbial Decomposition in Oligotrophic Streams: a Microcosm Study. Microbial Ecology, 82(4), 897–908. https://doi.org/10.1007/s00248-021-01858-w.

Prambauer, M., Wendeler, C., Weitzenböck, J., & Burgstaller, C. (2019). Biodegradable geotextiles – An overview of existing and potential materials. Geotextiles and Geomembranes, 47(1), 48–59. https://doi.org/10.1016/j.geotexmem.2018.09.006

Ramos, S. M., Graça, M. A. S., & Ferreira, V. (2021). A comparison of decomposition rates and biological colonization of leaf litter from tropical and temperate origins. Aquatic Ecology, 55(3), 925–940. https://doi.org/10.1007/s10452-021-09872-3

Sahupala, A., Siahaya, T. E., Seipala, B. B., Siahaya, L., Pelupessy, L., & Komul, Y. D. (2021). Species of pandan (Pandanus sp) in Gorom Island, East Seram Regency. IOP Conference Series: Earth and Environmental Science, 883(1). https://doi.org/10.1088/1755-1315/883/1/012009

Su, Z., Zhu, X., Wang, Y., Mao, S., & Shangguan, Z. (2022). Litter C and N losses at different decomposition stages of Robinia pseudoacacia: The weaker effects of soil enzyme activities compared with those of litter quality and the soil environment. Frontiers in Environmental Science, 10(November), 1–16. https://doi.org/10.3389/fenvs.2022.956309

Tanasã, F., Nechifor, M., Ignat, M. E., & Teacã, C. A. (2022). Geotextiles—A Versatile Tool for Environmental Sensitive Applications in Geotechnical Engineering. Textiles, 2(2), 189–208. https://doi.org/10.3390/textiles2020011

Teli, M. D., & Jadhav, A. C. (2017). Mechanical Extraction and Physical Characterization of Pandanus Odorifer Lignocellulosic Fibre. International Journal of Science and Research (IJSR), 6(1), 1370–1374. https://doi.org/10.21275/art20164365

Timsina, J. (2018). Can organic sources of nutrients increase crop yields to meet global food demand? Agronomy, 8(10), 1–20. https://doi.org/10.3390/agronomy8100214

Xu, D., Qiu, X., & Xu, Z. (2017). Effect of water hyacinth mulch on soil temperature, water content and maize yield (Zea mays L.) in southeast China. Environmental Engineering and Management Journal, 16(1), 85–91. https://doi.org/10.30638/eemj.2017.010

Xu, M. ping, Zhi, R. chen, Jian, J. nan, Feng, Y. zhong, Han, X. hui, & Zhang, W. (2023). Changes in Soil Organic C Fractions and C Pool Stability Are Mediated by C-Degrading Enzymes in Litter Decomposition of Robinia pseudoacacia Plantations. Microbial Ecology, 86(2), 1189–1199. https://doi.org/10.1007/s00248-022-02113-6

Yan, J., Wang, L., Hu, Y., Tsang, Y. F., Zhang, Y., Wu, J., Fu, X., & Sun, Y. (2018). Plant litter composition selects different soil microbial structures and in turn drives different litter decomposition pattern and soil carbon sequestration capability. Geoderma, 319(August 2017), 194–203. https://doi.org/10.1016/j.geoderma.2018.01.009.

Yang, Y., Yang, J., Zhao, T., Huang, X., & Zhao, P. (2016). Ecological restoration of highway slope by covering with straw-mat and seeding with grass-legume mixture. Ecological Engineering, 90, 68–76. https://doi.org/10.1016/j.ecoleng.2016.01.052

Zhang, X., Qian, Y., & Cao, C. (2015). Effects of straw mulching on maize photosynthetic characteristics and rhizosphere soil micro-ecological environment. Chilean Journal of Agricultural Research, 75(4), 481–487. https://doi.org/10.4067/S0718-58392015000500014

Zhao, L., Jia, K., Liu, X., Li, J., & Xia, M. (2023). Geography and Sustainability Assessment of land degradation in Inner Mongolia between 2000 and 2020 based on remote sensing data. Geography and Sustainability, 4(2), 100–111. https://doi.org/10.1016/j.geosus.2023.01.003

Zhou, X., Dong, K., Tang, Y., Huang, H., Peng, G., & Wang, D. (2023). Research Progress on the Decomposition Process of Plant Litter in Wetlands: A Review. Water (Switzerland), 15(18), 1–15. https://doi.org/10.3390/w15183246

Zhou, Z., Li, Z., Chen, K., Chen, Z., Zeng, X., Yu, H., Guo, S., Shangguan, Y., Chen, Q., Fan, H., Tu, S., He, M., & Qin, Y. (2021). Changes in soil physicochemical properties and bacterial communities at different soil depths after long-term straw mulching under a no-till system. Soil, 7(2), 595–609. https://doi.org/10.5194/soil-7-595-2021




DOI: http://dx.doi.org/10.5400/jts.2025.v30i2.125-135

Refbacks

  • There are currently no refbacks.


INDEXING SITE

University of OxfordColumbia University LibraryStanford Crossref EBSCO

DOAJ


Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.