Application of Rice-Husk Biochar to Coarse-Textured Ultisols and the Effects on Soil Fertility Indicators at Different Amendment-to-Sampling Intervals

Nancy Ekene Ebido, Chukwuebuka Ebuka Awaogu, Jacinta Chinonso Akubue, Ogorchukwu Valeria Ozongwu, Benedict Onyebuchi Unagwu, Sunday E. Obalum, Charles Arizechukwu Igwe

Abstract


The low fertility status of the highly weathered tropical soils offers the opportunity to study the potential and optimum application rate of biochar as an organic soil amendment, especially for the dominant coarse-textured Ultisols. Despite the relatively fast mineralisation of organics in these soils and the need to synchronise nutrient release crops critical stages of nutrient requirement, the time corresponding to peak effects of biochar remains unclear. The effects of rice-husk biochar (RHB) on the soil fertility of sandy-loam Ultisols at 0, 7.5, 15, 30, and 60 Mg ha-1 equivalents in 2-kg soils were assessed at 0, 2, 4, 8, and 12 weeks of incubation (WOI). Treatments were prepared in batches to enable concurrent sampling for all five incubation intervals. The RHB enhanced soil fertility across the incubation intervals, with optimal rates as 15 Mg ha-1 for soil pH and 30 - 60 Mg ha-1 for macronutrients availability. Relative to the its non-application, RHB increased soil pH-H2O, total N, available P, exchangeable bases, exchangeable acidity, apparent CEC and base saturation by 4-30%, 43-100%, 30-202%, 13-240%, 14-675%, 21-126% and 7-82%, respectively. Soil pH tended to decrease after, while available P progressively decreased before 8 WOI, when treatment effects were generally most pronounced. At an all-encompassing optimal rate range of 30-60 Mg ha-1, RHB could reduce soil acidity and enhance the macronutrient status of coarse-textured Ultisols over at least 12 weeks, soil fertility restoration effects of which are likely to be most pronounced around 8 weeks.

Keywords


incubation intervals; organic amendment; rice-husk biochar; soil nutrients; Ultisols

Full Text:

PDF

References


Adejumo, S. A., Owolabi, M. O., & Odesola, I. F. (2016). Agro-physiologic effects of compost and biochar produced at different temperatures on growth, photosynthetic pigment and micronutrients uptake of maize crop. African Journal of Agricultural Research, 11(8), 661–673. https://doi.org/10.5897/AJAR2015.9895

Adekiya, A. O., Agbede, T. M., Aboyeji, C. M., Dunsin, O., & Simeon, V. T. (2019). Biochar and poultry manure effects on soil properties and radish (Raphanus sativus L.) yield. Biological Agriculture & Horticulture, 35(1), 33–45. https://doi.org/10.1080/01448765.2018.1500306

Adubasim, C. V., Igwenagu, C. M., Josiah, G. O., Obalum, S. E., Okonkwo, U. M., Uzoh, I. M., & Sato, S. (2018). Substitution of manure source and aerator in nursery media on sandy loam topsoil and their fertility indices 4 months after formulation. International Journal of Recycling of Organic Waste in Agriculture, 7(4), 305–312. https://doi.org/10.1007/s40093-018-0216-8

Alburquerque, J. A., Calero, J. M., Barrón, V., Torrent, J., del Campillo, M. C., Gallardo, A., & Villar, R. (2014). Effects of biochars produced from different feedstocks on soil properties and sunflower growth. Journal of Plant Nutrition and Soil Science, 177(1), 16–25. https://doi.org/10.1002/jpln.201200652

Baiyeri, P. K., Ugese, F. D., Obalum, S. E., & Nwobodo, C. E. (2020). Agricultural waste management for horticulture revolution in sub-Saharan Africa. CABI Reviews. https://doi.org/10.1079/pavsnnr202015017

Billa, S. F., Angwafo, T. E., & Ngome, A. F. (2019). Agro-environmental characterization of biochar issued from crop wastes in the humid forest zone of Cameroon. International Journal of Recycling of Organic Waste in Agriculture, 8(1), 1–13. https://doi.org/10.1007/s40093-018-0223-9

Bremner, J. M., & Mulvaney, C. S. (1982). Nitrogen—Total (pp. 595–624). https://doi.org/10.2134/agronmonogr9.2.2ed.c31

Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A., & Joseph, S. (2008). Using poultry litter biochars as soil amendments. Soil Research, 46(5), 437. https://doi.org/10.1071/SR08036

Chan, K.Y., & Xu, Z. (2009). Biochar: nutrient properties and their enhancements. In: Lehmann, J., Joseph, S. (eds), Biochar for Environmental Management: Science and Technology, Earthscan, United Kingdom: 67–84

Chukwuma, C. C., Oraegbunam, C. J., Ndzeshala, S. D., Uchida, Y., Ugwu, V. U., Obalum, S. E., & Igwe, C. A. (2024). Phosphorus mineralization in two lithologically dissimilar tropical soils as influenced by animal manure type and amendment-to-sampling time interval. Communications in Soil Science and Plant Analysis, 55(5), 707–722. https://doi.org/10.1080/00103624.2023.2276269

Dai, Z., Zhang, X., Tang, C., Muhammad, N., Wu, J., Brookes, P. C., & Xu, J. (2017). Potential role of biochars in decreasing soil acidification - A critical review. Science of The Total Environment, 581–582, 601–611. https://doi.org/10.1016/j.scitotenv.2016.12.169

Dang, T., Marschner, P., Fitzpatrick, R., & Mosley, L. (2018). Assessment of the binding of protons, al and fe to biochar at different ph values and soluble metal concentrations. Water, 10(1), 55. https://doi.org/10.3390/w10010055

Downie, A., Crosky, A., & Munroe, P. (2009). Physical properties of biochar. In: Lehmann, J., Joseph, S. (eds), Biochar for Environmental Management: Science and Technology, Earthscan, United Kingdom: 13–32

Ebido, N. E., Edeh, I. G., Unagwu, B. O., Nnadi, A. L., Ozongwu, O. V., Obalum, S. E., & Igwe, C. A. (2021). Rice-husk biochar effects on organic carbon, aggregate stability and nitrogen-fertility of coarse-textured Ultisols evaluated using Celosia argentea growth. SAINS TANAH - Journal of Soil Science and Agroclimatology, 18(2), 177. https://doi.org/10.20961/stjssa.v18i2.56330

Ebido, N. E., Nnadi, A. L., Adeoluwa, O. O., Ndubuaku, U. M., Obalum, S. E., Ugwuoju, C. L., Ajoagu, G. M., & Baiyeri, K. P. (2024). Influence of brewery waste and animal manure-based compost on the growth of green amaranth in sandy tropical soils. Organic Farming, 10(1), 69–79. https://doi.org/10.56578/of100104

Ezenne, G. I., Obalum, S. E., & Tanner, J. (2019). Physical-hydraulic properties of tropical sandy-loam soil in response to rice-husk dust and cattle dung amendments and surface mulching. Hydrological Sciences Journal, 64(14), 1746–1754. https://doi.org/10.1080/02626667.2019.1662909

Frimpong Manso, E., Nartey, E. K., Adjadeh, T. A., Darko, D. A., Lawson, I. Y. D., & Amoatey, C. A. (2019). Use of corn cob and rice husk biochar as liming materials in acid soils. West African Journal of Applied Ecology, 27(2), 32–50.

Ghorbani, M., & Amirahmadi, E. (2018). Effect of rice husk biochar (RHB) on some of chemical properties of an acidic soil and the absorption of some nutrients. Journal of Applied Sciences and Environmental Management, 22(3), 313. https://doi.org/10.4314/jasem.v22i3.4

Ghorbani, M., Asadi, H., & Abrishamkesh, S. (2019). Effects of rice husk biochar on selected soil properties and nitrate leaching in loamy sand and clay soil. International Soil and Water Conservation Research, 7(3), 258–265. https://doi.org/10.1016/j.iswcr.2019.05.005

Glaser, B., Lehmann, J., & Zech, W. (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - a review. Biology and Fertility of Soils, 35(4), 219–230. https://doi.org/10.1007/s00374-002-0466-4

Harris, K., Gaskin, J., Cabrera, M., Miller, W., & Das, K. C. (2013). Characterization and mineralization rates of low temperature peanut hull and pine chip biochars. Agronomy, 3(2), 294–312. https://doi.org/10.3390/agronomy3020294

Hass, A., Gonzalez, J. M., Lima, I. M., Godwin, H. W., Halvorson, J. J., & Boyer, D. G. (2012). Chicken manure biochar as liming and nutrient source for acid appalachian soil. Journal of Environmental Quality, 41(4), 1096–1106. https://doi.org/10.2134/jeq2011.0124

Huang, Z., Hu, L., & Dai, J. (2020). Effects of ageing on the surface characteristics and Cu(ii) adsorption behaviour of rice husk biochar in soil. Open Chemistry, 18(1), 1421–1432. https://doi.org/10.1515/chem-2020-0164

Iboko, M. P., Dossou-Yovo, E. R., Obalum, S. E., Brümmer, C., Ndindeng, S. A., Diedhiou, S., & Teme, N. (2025). Biochar and nitrogen fertilizer application increased yield and economic benefits in no-till lowland rice production system. Archives of Agronomy and Soil Science, 71(1), 1–27. https://doi.org/10.1080/03650340.2025.2515104

Ifeanyi-Onyishi, I. F., Ezeaku, V. I., Umeugokwe, C. P., Ezeaku, P. I., & Obalum, S. E. (2024). Distribution of soil fertility indices in aggregate size fractions under different land-use types for coarse-textured soils of the derived savannah. Journal of Degraded and Mining Lands Management, 12(1), 6695–6704. https://doi.org/10.15243/jdmlm.2024.121.6695

Igwe, C. A., Nwite, J. C., Agharanya, K. U., Watanabe, Y., Obalum, S. E., Okebalama, C. B., & Wakatsuki, T. (2013). Aggregate-associated soil organic carbon and total nitrogen following amendment of puddled and sawah -managed rice soils in southeastern Nigeria. Archives of Agronomy and Soil Science, 59(6), 859–874. https://doi.org/10.1080/03650340.2012.684877

Ippolito, J. A., Cui, L., Kammann, C., Wrage-Mönnig, N., Estavillo, J. M., Fuertes-Mendizabal, T., Cayuela, M. L., Sigua, G., Novak, J., Spokas, K., & Borchard, N. (2020). Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review. Biochar, 2(4), 421–438. https://doi.org/10.1007/s42773-020-00067-x

Jien, S.-H., & Wang, C.-S. (2013). Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena, 110, 225–233. https://doi.org/10.1016/j.catena.2013.06.021

Jubaedah, M., & Nurida, N. L. (2021). Effects of residual biochar amendment on soil chemical properties, nutrient uptake, crop yield and N2O emissions reduction in acidic upland rice of East Lampung. IOP Conference Series: Earth and Environmental Science, 648(1), 012103. https://doi.org/10.1088/1755-1315/648/1/012103

Kartika, K., Sakagami, J.-I., Lakitan, B., Yabuta, S., Akagi, I., Widuri, L. I., Siaga, E., Iwanaga, H., & Nurrahma, A. H. I. (2021). Rice husk biochar effects on improving soil properties and root development in rice (Oryza glaberrima Steud.) exposed to drought stress during early reproductive stage. AIMS Agriculture and Food, 6(2), 737–751. https://doi.org/10.3934/agrfood.2021043

Lehmann, J., da Silva, J. P., Steiner, C., Nehls, T., Zech, W., & Glaser, B. (2003). Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant and Soil, 249(2), 343–357. https://doi.org/10.1023/A:1022833116184

Li, J., Lv, G., Bai, W., Liu, Q., Zhang, Y., & Song, J. (2016). Modification and use of biochar from wheat straw (Triticum aestivum L.) for nitrate and phosphate removal from water. Desalination and Water Treatment, 57(10), 4681–4693. https://doi.org/10.1080/19443994.2014.994104.

Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O’Neill, B., Skjemstad, J. O., Thies, J., Luizão, F. J., Petersen, J., & Neves, E. G. (2006). Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 70(5), 1719–1730. https://doi.org/10.2136/sssaj2005.0383

Liu, Z., He, T., Cao, T., Yang, T., Meng, J., & Chen, W. (2017). Effects of biochar application on nitrogen leaching, ammonia volatilization and nitrogen use efficiency in two distinct soils. Journal of Soil Science and Plant Nutrition, 17(2), 515–528. https://doi.org/10.4067/S0718-95162017005000037

Manolikaki, I., & Diamadopoulos, E. (2017). Ryegrass yield and nutrient status after biochar application in two Mediterranean soils. Archives of Agronomy and Soil Science, 63(8), 1093–1107. https://doi.org/10.1080/03650340.2016.1267341

Masulili, A., Utomo, W. H., & Ms S. (2010). Rice husk biochar for rice based cropping system in acid soil 1. The characteristics of rice husk biochar and its influence on the properties of acid sulfate soils and rice growth in West Kalimantan, Indonesia. Journal of Agricultural Science, 2(1). https://doi.org/10.5539/jas.v2n1p39

Mavi, M. S., Singh, G., Singh, B. P., Sekhon, B. S., Choudhary, O. P., Sagi, S., & Berry, R. (2018). Interactive effects of rice-residue biochar and N-fertilizer on soil functions and crop biomass in contrasting soils. Journal of Soil Science and Plant Nutrition, 18(1), 41–59. https://doi.org/10.4067/s0718-95162018005000201

McBeath, A. V., & Smernik, R. J. (2009). Variation in the degree of aromatic condensation of chars. Organic Geochemistry, 40(12), 1161–1168. https://doi.org/10.1016/j.orggeochem.2009.09.006

McLean, E. O. (1982). Soil pH and lime requirement. In: Page, A. L. (ed). Methods of Soil Analysis, Part 2: Chemical Methods. American Society of Agronomy Monograph No. 9, Madison WI, pp 199–224

Mehmood, K., Baquy, M. A.-A., & Xu, R. (2018). Influence of nitrogen fertilizer forms and crop straw biochars on soil exchange properties and maize growth on an acidic Ultisol. Archives of Agronomy and Soil Science, 64(6), 834–849. https://doi.org/10.1080/03650340.2017.1385062

Nahm, K. H. (2003). Evaluation of the nitrogen content in poultry manure. World’s Poultry Science Journal, 59(1), 77–88. https://doi.org/10.1079/WPS20030004

Ndzeshala, S. D., Obalum, S. E., & Igwe, C. A. (2023). Some utilisation options for cattle dung as soil amendment and their effects in coarse-textured Ultisols and maize growth. International Journal of Recycling of Organic Waste in Agriculture, 12(1), 123–139. https://doi.org/10.30486/ijrowa.2022.1934239.1284

Njoku, C., Agwu, J. O., Uguru, B. N., Igwe, T. S, Ngene, P. N., Igwe, O. F., Ajana, A. J., & Obijianya, C. C. (2017). Soil chemical properties and yield of cucumber as affected by rice husk dust, biochar and woodash applications in Abakaliki, southeastern Nigeria. Applied Chemistry (IOSR-JAc), 10(7 Ver III), 61–66. https://doi.org/10.9790/5736-1007036166

Njoku, C., Uguru, B. N., & Mbah, C. N. (2015). Effect of rice husk dust on selected soil chemical properties and maize grain yield in Abakaliki, South Eastern Nigeria. Applied Science Reports, 12(3), 43–149. https://doi.org/10.15192/pscp.asr.2015.12.3.143149

Nwajiaku, I. M., Olanrewaju, J. S., Sato, K., Tokunari, T., Kitano, S., & Masunaga, T. (2018). Change in nutrient composition of biochar from rice husk and sugarcane bagasse at varying pyrolytic temperatures. International Journal of Recycling of Organic Waste in Agriculture, 7(4), 269–276. https://doi.org/10.1007/s40093-018-0213-y

Nwite, J. C., Essien, B. A., Anaele, M. U., Igwe, C. A., Obalum, S. E., & Okolo, C. (2012a) Effect of rice husk and rice husk ash supplemented with poultry dropping on soil chemical properties, growth and yield of maize (Zea mays) in Ishiagu. Presented under Climate Change, Soil Management Alternatives and Sustainable Food Production, the 36th Annual Conf Soil Sci Soc Nigeria (SSSN), 12-16 Mar 2012, Hall of Fame, University of Nigeria, Nsukka, Nigeria

Nwite, J. C., Essien, B. A., Anaele, M. U., Obalum, S. E., Keke, C. I., & Igwe, C. A. (2012b). Supplementary use of poultry droppings and rice-husk waste as organic amendments in southeastern Nigeria 1/ : Soil chemical properties and maize yield. Libyan Agriculture Research Center Journal International, 3(2), 90–97. https://doi.org/10.5829/idosi.larcji.2012.3.2.538

Nwite, J. C., Obalum, S. E., Igwe, C. A., & Wakatsuki, T. (2017). Interaction of small-scale supplemental irrigation, sawah preparation intensity and soil amendment type on productivity of lowland sawah -rice system. South African Journal of Plant and Soil, 34(4), 301–310. https://doi.org/10.1080/02571862.2017.1309468

Obalum, S. E., Chibuike, G. U. (2017). Air-drying effect on soil reaction and phosphorus extractability from upland-lowland tropical soils as related to their colloidal stability. Applied Ecology and Environmental Research, 15(1), 525–540. https://doi.org/10.15666/aeer/1501_525540

Obalum, S. E., Ebido, N. E., Akubue, J. C., Umoren, A. S., Onuze, B. A., Orah, A. I., & Igwe, C. A. (2024). Contributions of soil hydrothermal regime to biochar effectiveness: chronicling empirical evidence among Nigerian agroecologies. In: Abdu, N. (ed), Glimpse into the Frontiers of Research in Soil Science in Nigeria (Chap 8, pp 174–205)

Obalum, S. E., Okpara, I. M., Obi, M. E., Wakatsuki, T. (2011). Short-term effects of tillage-mulch practices under sorghum and soybean on organic carbon and eutrophic status of a degraded Ultisol in southeastern Nigeria. Tropical and Subtropical Agroecosystems, 14(2), 393–403

Obalum, S. E., Watanabe, Y., Igwe, C. A., Obi, M. E., & Wakatsuki, T. (2013). Improving on the prediction of cation exchange capacity for highly weathered and structurally contrasting tropical soils from their fine-earth fractions. Communications in Soil Science and Plant Analysis, 44(12), 1831–1848. https://doi.org/10.1080/00103624.2013.790401

Ogunezi, K. C., Okebalama, C. B., & Obalum, S. E. (2019). Optimum poultry droppings rate for coarse-loamy Ultisols based on soil macro-aggregation and fertility indices and evaluation using cucumber (Cucumis sativus). Presented under Understanding Nigerian Soils for Sustainable Food & Nutrition Security and Healthy Environment, the 43rd Annual Conference of Soil Science Society of Nigeria, 15-19 July 2019, University of Agriculture, Makurdi, Benue State, Nigeria

Onah, C. J., Nnadi, A. L., Eyibio, N. U., Obi, J. O., Orah, A. I., Amuji, C. F., & Obalum, S. E. (2023). Off-Season heavy application of poultry manure to droughty-acid soils under heavily protective organic mulch later burnt to ash improves their productivity. West African Journal of Applied Ecology, 31(1), 23–36.

Onah, M. C., Obalum, S. E., & Uzoh, I. M. (2021). Vertical distribution of fertility indices and textural properties of a sandy clay loam under short and long-term fallow. International Journal of Agriculture and Rural Development, 24(1), 5697–5703

Olsen, S. R., & Sommers, L. E. (1982). Phosphorus. In: Page, A. L. et al. (eds) Methods of Soil Analysis, Part 2. 2nd ed. Agronomy Monogr. 9. ASA and SSSA, Madison WI, pp 403–430

Oraegbunam, C. J., Kimura, A., Yamamoto, T., Madegwa, Y. M., Obalum, S. E., Tatsumi, C., Watanabe, T., & Uchida, Y. (2023). Bacterial communities and soil properties influencing dung decomposition and gas emissions among Japanese dairy farms. Journal of Soil Science and Plant Nutrition, 23(3), 3343–3348. https://doi.org/10.1007/s42729-023-01250-2

Oraegbunam, C. J., Obalum, S. E., Watanabe, T., Madegwa, Y. M., & Uchida, Y. (2022). Differences in carbon and nitrogen retention and bacterial diversity in sandy soil in response to application methods of charred organic materials. Applied Soil Ecology, 170, 104284. https://doi.org/10.1016/j.apsoil.2021.104284

Persaud, T., Homenauth, O., Fredericks, D., & Hamer, S. (2018). Effect of rice husk biochar as an amendment on a marginal soil in Guyana. World Environment, 8(1), 20–25. https://doi.org/10.5923/j.env.20180801.03

Pratiwi, E. P. A., & Shinogi, Y. (2016). Rice husk biochar application to paddy soil and its effects on soil physical properties, plant growth, and methane emission. Paddy and Water Environment, 14(4), 521–532. https://doi.org/10.1007/s10333-015-0521-z

Qian, L., Chen, B., & Chen, M. (2016). Novel alleviation mechanisms of aluminum phytotoxicity via released biosilicon from rice straw-derived biochars. Scientific Reports, 6(1), 29346. https://doi.org/10.1038/srep29346

Qian, L., Chen, B., & Hu, D. (2013). Effective Alleviation of aluminum phytotoxicity by manure-derived biochar. Environmental Science & Technology, 47(6), 2737–2745. https://doi.org/10.1021/es3047872

Rhoades, J. D. (1982). Cation exchange capacity. In: Page, A. L., Miller, R. H., Keeney, D. R. (eds). Methods of Soil Analysis, Part 2: Chemical and Microbial Properties. Madison Wisconsin: American Society of Agronomy Monograph No. 9, 961–1010

Rogovska, N., Laird, D. A., Rathke, S. J., & Karlen, D. L. (2014). Biochar impact on midwestern Mollisols and maize nutrient availability. Geoderma, 230–231, 340–347. https://doi.org/10.1016/j.geoderma.2014.04.009

Shetty, R., & Prakash, N. B. (2020). Effect of different biochars on acid soil and growth parameters of rice plants under aluminium toxicity. Scientific Reports, 10(1), 12249. https://doi.org/10.1038/s41598-020-69262-x.

Silber, A., Levkovitch, I., & Graber, E. R. (2010). pH-Dependent mineral release and surface properties of cornstraw biochar: Agronomic implications. Environmental Science & Technology, 44(24), 9318–9323. https://doi.org/10.1021/es101283d.

Ugwu, V. U., Nnadi, A. L., Adubasim, C. V., Sato, S., Igwenagu, C. M., Obalum, S. E., & Igwe, C. A. (2020). Organic-waste aerator could completely displace poultry-droppings manure in nursery media based on coarse-textured soil: evidence with cashew seedlings. In: Baiyeri, K. P., Aba, S. C. (eds), Sustainable Horticulture Production System Intensified (pp 941-951), Proc 38th Annual Conf Hort Society Nigeria (HORTSON), University of Nigeria Nsukka, 25–31 Oct 2020.

Ugwu, V. U., Orah, A. I., Osuji, C. I., Akubue, J. C., Obalum, S. E., Onuze, B. A., & Igwe, C. A. (2024). Lime and manure application to low-fertility tropical soils enhances phosphorus bioavailability for increased agronomic productivity. Agroindustrial Science, 14(3), 225–235. https://doi.org/10.17268/agroind.sci.2024.03.05.

Van Zwieten, L., Kimber, S., Morris, S., Chan, K. Y., Downie, A., Rust, J., Joseph, S., & Cowie, A. (2010). Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil, 327(1–2), 235–246. https://doi.org/10.1007/s11104-009-0050-x.

Xiao, X., Chen, B., Chen, Z., Zhu, L., & Schnoor, J. L. (2018). Insight into multiple and multilevel structures of biochars and their potential environmental applications: A critical review. Environmental Science & Technology, 52(9), 5027–5047. https://doi.org/10.1021/acs.est.7b06487.

Yamato, M., Okimori, Y., Wibowo, I. F., Anshori, S., & Ogawa, M. (2006). Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Science and Plant Nutrition, 52(4), 489–495. https://doi.org/10.1111/j.1747-0765.2006.00065.x.

Yuan, J.-H., Xu, R.-K., Wang, N., & Li, J.-Y. (2011). Amendment of acid soils with crop residues and biochars. Pedosphere, 21(3), 302–308. https://doi.org/10.1016/S1002-0160(11)60130-6.

Zhao, R., Coles, N., Kong, Z., & Wu, J. (2015). Effects of aged and fresh biochars on soil acidity under different incubation conditions. Soil and Tillage Research, 146, 133–138. https://doi.org/10.1016/j.still.2014.10.014.

Zheng, W., Guo, M., Chow, T., Bennett, D. N., & Rajagopalan, N. (2010). Sorption properties of greenwaste biochar for two triazine pesticides. Journal of Hazardous Materials, 181(1–3), 121–126. https://doi.org/10.1016/j.jhazmat.2010.04.103.

Zimmerman, A. R., Gao, B., & Ahn, M.-Y. (2011). Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biology and Biochemistry, 43(6), 1169–1179. https://doi.org/10.1016/j.soilbio.2011.02.005.




DOI: http://dx.doi.org/10.5400/jts.2025.v30i2.69-83

Refbacks

  • There are currently no refbacks.


INDEXING SITE

University of OxfordColumbia University LibraryStanford Crossref EBSCO

DOAJ


Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.