The dynamics of soil organic matter fractions in cacao-based production systems

Rika Ratna Sari

Abstract


Soil degradation is an important problem that affects crop production, especially in cocoa agroforestry systems where soil health is very important to obtain optimal results. However, the effect of land management on changes in soil organic matter content is often not clearly visible through measurements of total soil organic carbon content.  This study investigates the distribution of soil organic matter fractions across various land-use gradients and soil depths in cacao-based agroforestry landscapes in Southeast Sulawesi, Indonesia. Soil samples were collected from three villages representing different parts of a watershed and subjected to density fractionation to separate light (LF), intermediate (IF), and heavy (HF) fractions. Our results indicate that remnant forests (RF) maintain higher total SOM fractions, followed by cacao-based complex dan simple agroforestry (CAF, SAF), particularly in the 0-10 cm soil depth. In contrast, annual crops (CR), exhibit the lowest SOM fractions. The LF is significantly influenced by standing litter and decomposition rates, while HF shows minimal variation across land-use systems, suggesting long-term stability. The LF also shows a strong positive correlation with SOC content, highlighting its responsiveness to recent organic inputs. The findings underscore the importance of diverse litter inputs and tree diversity in enhancing SOM fractions and SOC content in agroforestry systems. The study concludes that complex cacao-based agroforestry systems can effectively mimic natural forest conditions, promoting soil health. These insights provide valuable knowledge for sustainable land management practices aimed at mitigating soil degradation and improving soil quality in cacao production systems.

Keywords


soil health; light fraction of SOM; soil quality; C organic

References


Andrews, D. F. (1974). A Robust Method for Multiple Linear Regression. Technometrics, 16(4), 523-531. https://doi.org/https://doi.org/10.2307/1267603

Barrios, E., Buresh, R. J., & Sprent, J. I. (1996). Nitrogen mineralization in density fractions of soil organic matter from maize and legume cropping systems. Soil Biology and Biochemistry, 28(10), 1459-1465. https://doi.org/https://doi.org/10.1016/S0038-0717(96)00155-1

Boone, R. D. (1994). Light-fraction soil organic matter: origin and contribution to net nitrogen mineralization. Soil Biology and Biochemistry, 26(11), 1459-1468. https://doi.org/https://doi.org/10.1016/0038-0717(94)90085-X

Bremer, E., Janzen, H. H., & Johnston, A. M. (1994). Sensitivity of total, light fraction and mineralizable organic matter to management practices in a Lethbridge soil. Canadian Journal of Soil Science, 74(2), 131-138. https://doi.org/10.4141/cjss94-020

Chevallier, T. (2011). Physical Protection of Organic Carbon in Soil Aggregates. In J. Gliński, J. Horabik, & J. Lipiec (Eds.), Encyclopedia of Agrophysics (pp. 592-595). Springer Netherlands. https://doi.org/10.1007/978-90-481-3585-1_197

De Laurentiis, V., Maier, S., Horn, R., Uusitalo, V., Hiederer, R., Chéron-Bessou, C., Morais, T., Grant, T., Milà i Canals, L., & Sala, S. (2024). Soil organic carbon as an indicator of land use impacts in life cycle assessment. The International Journal of Life Cycle Assessment, 29(7), 1190-1208. https://doi.org/10.1007/s11367-024-02307-9

Fontaine, S., Barot, S., Barré, P., Bdioui, N., Mary, B., & Rumpel, C. (2007). Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 450(7167), 277-280. https://doi.org/10.1038/nature06275

Gelman, A., & Hill, J. (2006). Data analysis using regression and multilevel/hierarchical models. Cambridge University Press.

Gregorich, E., Monreal, C. M., Schnitzer, M. I., & Schulten, H.-r. (1996). Transformation of plant residues into soil organic matter : Chemical characterization of plant tissue, isolated soil fractions, and whole soils. Soil Science, 161, 680-693.

Hairiah, K., Sulistyani, H., Suprayogo, D., Widianto, Purnomosidhi, P., Widodo, R. H., & van Noordwijk, M. (2006). Litter layer residence time in forest and coffee agroforestry systems in Sumberjaya, West Lampung. Forest Ecology and Management, 224(1-2), 45-57. https://doi.org/https://doi.org/10.1016/j.foreco.2005.12.007

Hoffmann, W. A. (2003). Regional feedbacks among fire, climate, and tropical deforestation. Journal of Geophysical Research, 108(D23). https://doi.org/10.1029/2003jd003494

Janzen, H. H., Campbell, C. A., Brandt, S. A., Lafond, G. P., & Townley-Smith, L. (1992). Light-fraction organic matter in soils from long-term crop rotations. Soil Science Society of America Journal, 56, 1799-1806.

Kay, B. D., Lal, R., Kimble, J. M., Follett, R. F., & Stewart, B. A. (1998). Soil structure and organic carbon: a review.

Lal, R. (2004). Soil carbon sequestration to mitigate climate change. Geoderma, 123(1), 1-22. https://doi.org/https://doi.org/10.1016/j.geoderma.2004.01.032

Lal, R. (2009). Challenges and opportunities in soil organic matter research. European Journal of Soil Science, 60(2), 158-169. https://doi.org/https://doi.org/10.1111/j.1365-2389.2008.01114.x

Lorenz, K., & Lal, R. (2005). The Depth Distribution of Soil Organic Carbon in Relation to Land Use and Management and the Potential of Carbon Sequestration in Subsoil Horizons. In Advances in Agronomy (Vol. 88, pp. 35-66). Academic Press. https://doi.org/https://doi.org/10.1016/S0065-2113(05)88002-2

Lützow, M. v., Kögel-Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G., Marschner, B., & Flessa, H. (2006). Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review. European Journal of Soil Science, 57(4), 426-445. https://doi.org/https://doi.org/10.1111/j.1365-2389.2006.00809.x

Meijboom, F. W., Hassink, J., & Van Noordwijk, M. (1995). Density fractionation of soil macroorganic matter using silica suspensions. Soil Biology and Biochemistry, 27(8), 1109-1111. https://doi.org/https://doi.org/10.1016/0038-0717(95)00028-D

Nair, P. K. R. (2011). Agroforestry Systems and Environmental Quality: Introduction. Journal of Environmental Quality, 40(3), 784-790. https://doi.org/https://doi.org/10.2134/jeq2011.0076

Neilson, J. (2007). Global markets, farmers, and the state: Sustaining profits in the Indonesian cocoa sector. Bulletin of Indonesian Economic Studies, 43(2), 227-250. https://doi.org/10.1080/00074910701408073

R-Core-Team. (2024). R: A language and environment for statistical computing. In R Foundation for Statistical Computing. http://www.r-project.org/index.html

Rumpel, C., & Kögel-Knabner, I. (2011). Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant and Soil, 338(1), 143-158. https://doi.org/10.1007/s11104-010-0391-5

Santos, J. A. d., Santos, A. d. D. d., Costa, C. R., Araujo, A. S. d., Leite, G. G., Coser, T. R., & Figueiredo, C. C. d. (2024). Fractions of Organic Matter and Soil Carbon Balance in Different Phases of an Agroforestry System in the Cerrado: A Ten-Year Field Assessment. Soil Systems, 8(2). https://doi.org/10.3390/soilsystems8020044

Saputra, D. D., Khasanah, N. m., Sari, R. R., & van Noordwijk, M. (2024). Avoidance of tree-site mismatching of modelled cacao production systems across climatic zones: Roots for multifunctionality. Agricultural Systems, 216, 103895. https://doi.org/https://doi.org/10.1016/j.agsy.2024.103895

Saputra, D. D., Sari, R. R., Hairiah, K., Roshetko, J. M., Suprayogo, D., & van Noordwijk, M. (2020). Can cocoa agroforestry restore degraded soil structure following conversion from forest to agricultural use? Agroforestry Systems. https://doi.org/https://doi.org/10.1007/s10457-020-00548-9

Sari, R. R., Rozendaal, D. M. A., Saputra, D. D., Hairiah, K., Roshetko, J. M., & van Noordwijk, M. (2022). Balancing litterfall and decomposition in cacao agroforestry systems. Plant and Soil. https://doi.org/https://doi.org/10.1007/s11104-021-05279-z

Sari, R. R., Saputra, D., Hairiah, K., Rozendaal, D. M. A., Roshetko, J., & van Noordwijk, M. (2020). Gendered species preferences link tree diversity and carbon stocks in cacao agroforest in Southeast Sulawesi, Indonesia. Land, 9(4). https://doi.org/https://doi.org/10.3390/land9040108

Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D. A. C., Nannipieri, P., Rasse, D. P., Weiner, S., & Trumbore, S. E. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478(7367), 49-56. https://doi.org/10.1038/nature10386

Sitompul, S. M., Hairiah, K., Cadisch, G., & Van Noordwijk, M. (2000). Dynamics of density fractions of macro-organic matter after forest conversion to sugarcane and woodlots, accounted for in a modified century model. NJAS: Wageningen Journal of Life Sciences, 48(1), 61-73. https://doi.org/10.1016/S1573-5214(00)80005-6

Six, J., Conant, R. T., Paul, E. A., & Paustian, K. (2002). Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 241(2), 155-176. https://doi.org/10.1023/A:1016125726789

Sollins, P., Homann, P., & Caldwell, B. A. (1996). Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma, 74(1), 65-105. https://doi.org/https://doi.org/10.1016/S0016-7061(96)00036-5

Spycher, G., Sollins, P., & Rose, S. (1983). Carbon and nitrogen in the light fraction of a forest soil: vertical distribution and seasonal patterns. Soil Science, 135(2). https://journals.lww.com/soilsci/fulltext/1983/02000/carbon_and_nitrogen_in_the_light_fraction_of_a.2.aspx

Tan, Z., Lal, R., Owens, L., & Izaurralde, R. C. (2007). Distribution of light and heavy fractions of soil organic carbon as related to land use and tillage practice. Soil and Tillage Research, 92(1), 53-59. https://doi.org/https://doi.org/10.1016/j.still.2006.01.003

van Noordwijk, M., Cerri, C., Woomer, P. L., Nugroho, K., & Bernoux, M. (1997). Soil carbon dynamics in the humid tropical forest zone. Geoderma, 79(1), 187-225. https://doi.org/https://doi.org/10.1016/S0016-7061(97)00042-6

Walkley, A., & Black, I. A. (1934). An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid tritation method. Soil Science, 37(1), 29-38. https://journals.lww.com/soilsci/Fulltext/1934/01000/AN_EXAMINATION_OF_THE_DEGTJAREFF_METHOD_FOR.3.aspx

Whalen, J. K., Bottomley, P. J., & Myrold, D. D. (2000). Carbon and nitrogen mineralization from light- and heavy-fraction additions to soil. Soil Biology and Biochemistry, 32(10), 1345-1352. https://doi.org/https://doi.org/10.1016/S0038-0717(00)00040-7

World-Agroforestry-Centre. (2014). Peta Tutupan Lahan Kabupaten Konaweha, Sulawesi Tenggara. In. Bogor, Indonesia: World Agroforestry Centre.




DOI: http://dx.doi.org/10.5400/jts.2025.v30i2.%25p

Refbacks

  • There are currently no refbacks.


INDEXING SITE

University of OxfordColumbia University LibraryStanford Crossref EBSCO

DOAJ


Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.