Utilization of biochar and mycorrhiza to increase the absorption of elemental nutrients of cayenne chili plant (Capsicum fruntescnes L.)

Bibiana Rini Widiati Giono, Muchtar Salam Solle, Muhammad Izzdin Idrus, Sofyan Sofyan

Abstract


This study aimed to obtain the composition of biochar as a soil enhancer and mycorrhizal dose, which affected the nutrient uptake of cayenne plants. This experimental research was based on a separate plot design (RPT) with a basic randomized block design (RCBD). The main plot experiment was vesicular-arbuscular mycorrhiza or VAM (m) with three levels: mycorrhiza 10 g/plant (m1), mycorrhiza 15 g/plant (m2), and mycorrhiza 20 g/plant (m3). The subplot is biochar composition as soil enhancer (b) with three types: biochar husk 50%+25% soil+25% sand (b1), 50% sand+25% soil+25% biochar wood (b2), and wood charcoal biochar 50%+soil 25%+biochar charcoal husk 25% (b3). Each level of the VAM doses factor is combined with biochar. These nine treatment combinations and the levels were repeated thrice, accounting for 27 experimental units. The results showed that the parameters of phosphorus uptake, potassium uptake, and fresh root weight had a positive and significant relationship to the percentage of mycorrhizal infections. The combination treatment of mycorrhiza 20 g/plant and the composition of 50% husk biochar+25% soil+25% sand, 15 g mycorrhizal dose treatment with 50% wood biochar+25% soil+25% biochar rice husk and 20 g/plant are the best treatment as a planting medium.


Keywords


Mycorrhiza; nutrient; planting media; soil enhancers.

Full Text:

PDF

References


Aggarwal A, Kadian N, Tanwar A, Yadav A, Gupta KK. 2011. Role of arbuscular mycorrhizal fungi (AMF) in global sustainable development. J Appl Nat Sci. 3(2):340–351.

Aldeman JM, Morton JB. 2001. Infectivity of vesicular arbuscular mychorrizal fungi influence host soil diluent combination on MPN estimates and percentage colonization. J Soil Biochem. 8(1):77-88. doi:10.1016/0038-0717(86)90106-9.

Amendola C, Montagnoli A, Terzaghi M, Trupiano D, Oliva F, Baronti S, Miglietta F, Chiatante D, Scippa G. 2017. Short-term effects of biochar on grapevine fine root dynamics and arbuscular mycorrhizae production. Agric Ecosyst Environ. 239: 236–245. doi:10.1016/j.agee.2017.01.025.

An ZQ, Hendrix JW, Hershman DE, Henson GT. 1990. Evaluation of the "Most Probable Number" (Mpn) and wet-sieving methods for determining soil-borne populations of endogonaceous mycorrhizal fungi. Mycologia. 82(5):576–581. doi:10.2307/3760048.

Atkinson CJ, Fitzgerald JD, Hipps NA. 2010. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant Soil. 337(1):1-18. doi:10.1007/s11104-010-0464-5.

Blackwell P, Joseph S, Munroe P, Anawar HM, Storer P, Gilkes RJ, Solaiman ZM. 2015. Influences of biochar and biochar-mineral complex on mycorrhizal colonisation and nutrition of wheat and sorghum. Pedosphere. 25(5):686–695. doi:10.1016/S1002-0160(15)30049-7.

Carballar-Hernández S, Hernández-Cuevas LV, Montaño NM, Ferrera-Cerrato R, Alarcón A. 2018. Species composition of native arbuscular mycorrhizal fungal consortia influences growth and nutrition of poblano pepper plants (Capsicum annuum L.). Appl Soil Ecol. 130:50–58. doi:10.1016/j.apsoil.2018.05.022

Chan KY, van Zwieten L, Meszaros I, Downie A, Joseph S. 2007. Agronomic values of greenwaste biochar as a soil amendment. Austr J Soil Res. 45(8):629–634. doi:10.1071/SR07109.

Chan KY, van Zwieten L, Meszaros I, Downie A, Joseph S. 2008. Using poultry litter biochars as soil amendments. Austr J Soil Res. 46(5):437–444. doi:10.1071/SR08036.

Dariah A, Sutono S, Nurida NL, Hartatik W, Pratiwi E. 2015. Pembenah tanah untuk meningkatkan produktivitas lahan pertanian [Soil enhancers to increase agricultural land productivity]. Jurnal Sumberdaya Lahan. 9(2):67–84. doi:10.21082/jsdl.v9n2.2015.%25p.

Echave M, Conti M, Clua A, Ruscitti M, Beltrano J. 2005. Responses of mycorrhizal infection in the drought resistance and growth of Lotus glaber. Lotus Environ. 35(2):182–186.

Finlay RD. 2008. Ecological aspects of mycorrhizal symbiosis: With special emphasis on the functional diversity of interactions involving the extraradical mycelium. J Exp Bot. 59(5):1115–1126. doi:10.1093/jxb/ern059.

Gaskin JW, Steiner C, Harris K, Das KC, Bibens B. 2008. Effect of low-temperature pyrilysis conditions on biochar for agriculture use. Am Soc Agric Biol Eng. 51(6):2061–2069. doi:10.13031/2013.25409.

Glaser B, Lehmann J, Zech W. 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - A review. Biol Fertil Soils. 35(4):219–230. doi:10.1007/s00374-002-0466-4.

Glaser B, Wiedner K, Seelig S, Schmidt HP, Gerber H. 2015. Biochar organic fertilizers from natural resources as substitute for mineral fertilizers. Agron Sustain Dev. 35(2):667–678. doi:10.1007/s13593-014-0251-4.

Hale SE, Alling V, Martinsen V, Mulder J, Breedveld GD, Cornelissen G. 2013. The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars. Chemosphere. 91(11):1612–1619. doi:10.1016/j.chemosphere.2012.12.057

Hu J, Wu F, Wu S, Lam CL, Lin X, Wong MH. 2014. Biochar and glomus caledonium influence cd accumulation of upland kangkong (Ipomoea aquatica Forsk.) intercropped with alfred stonecrop (Sedum alfredii Hance). Sci Rep. 4:1–7. doi:10.1038/srep04671.

Ioannidou O, Zabaniotou A. 2007. Agricultural residues as precursors for activated carbon production-A review. Renew Sustain Energ Rev. 11(9):1966–2005. doi:10.1016/j.rser.2006.03.013.

Jaya WS, Baharudin AB, Mulyati M. 2018. Pengaruh pemberian berbagai macam biochar dan dosis nitrogen terhadap pertumbuhan dan produksi kedelai (Glycine max L. Merill) [The effect of biochar kinds and dose of nitrogen on the growth and production of soybean (Gyline max L. Merill]. Crop Agro: Jurnal Ilmiah Budidaya Pertanian. 11(1):60–70.

Karaca H, Uygur V, Özkan A, Kaya Z. 2013. Effects of mycorrhizae and fertilization on soybean yield and nutrient uptake. Commun Soil Sci Plant Anal. 44(16):37–41. doi:10.1080/00103624.2013.809730.

Karer J, Wimmer B, Zehetner F, Kloss S, Feichtmair S, Kitzler B. 2013. Biochar application to temperate soils - effects on soil fertility and crop yield under field conditions. Agric Food Sci. 22:390–403. doi:10.23986/afsci.8155.

Kazemi F, Mohorko R. 2017. Review on the roles and effects of growing media on plant performance in green roofs in world climates. Urban Forest Urban Green. 23:13–26. doi:10.1016/j.ufug.2017.02.006.

Kormanik PP, Bryan WC, Schultz RC. 1980. Procedures and equipment for staining large numbers of plant root samples for endomycorrrhizal assay. Canadian J Microbiol. 26(4):536–538. doi:10.1139/m80-090.

Lehmann A, Veresoglou SD, Leifheit EF, Rillig MC. 2014. Arbuscular mycorrhizal influence on zinc nutrition in crop plants - A meta-analysis. Soil Biol Biochem. 69:123–131. doi:10.1016/j.soilbio.2013.11.001.

Lehmann J, da Silva JP, Steiner C, Nehls T, Zech W, Glaser B. 2003. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. Plant Soil. 249(2):343–357. doi:10.1023/A:1022833116184.

Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D. 2011. Biochar effects on soil biota - A review. Soil Biol Biochem. 43(9):1812–1836. doi:10.1016/j.soilbio.2011.04.022.

Li Y, Cheng J, Lee X, Chen Y, Gao W, Pan W, Tang Y. 2019. Effects of biochar-based fertilizers on nutrient leaching in a tobacco-planting soil. Acta Geochim. 38(1):1–7. doi:10.1007/s11631-018-0307-2.

Liu L, Li J, Yue F, Yan X, Wang F, Bloszies S, Wang Y. 2018. Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil. Chemosphere. 194:495–503. doi:10.1016/j.chemosphere.2017.12.025.

Meghvansi MK, Prasad K, Harwani D, Mahna SK. 2008. Response of soybean cultivars toward inoculation with three arbuscular mycorrhizal fungi and Bradyrhizobium japonicum in the alluvial soil. Eur J Soil Biol. 44(3):316–323. doi:10.1016/j.ejsobi.2008.03.003.

Mickan BS, Abbott LK, Stefanova K, Solaiman ZM. 2016. Interactions between biochar and mycorrhizal fungi in a water-stressed agricultural soil. Mycorrhiza. 26(6):565–574. doi:10.1007/s00572-016-0693-4.

Mulyani A, Agus F. 2017. Kebutuhan dan ketersediaan lahan cadangan untuk mewujudka cita-cita Indonesia sebagai lumbung pangan dunia tahun 2045 [The Need and Availability of Reserved Arable Land Realize Indonesian as the World Food Supplier in 2045]. Analisis Kebijakan Pertanian. 15(1):1–17. doi:10.21082/akp.v15n1.2017.1-17.

Nguyen TTN, Xu CY, Tahmasbian I, Che R, Xu Z, Zhou X, Wallace HM, Bai SH. 2017. Effects of biochar on soil available inorganic nitrogen: A review and meta-analysis. Geoderma. 288:79–96. doi:10.1016/j.geoderma.2016.11.004.

Oguntunde PG, Abiodun BJ, Ajayi AE, van de Giesen N. 2008. Effects of charcoal production on soil physical properties in Ghana. J Plant Nutr Soil Sci. 171(4):591–596. doi:10.1002/jpln.200625185.

Ortaş I. 2019. Role of microorganisms (Mycorrhizae) in organic farming. In Chandran S, Unni MR, Thomas S, editors. Organic Farm: Global Perspective and Methods. New Delhi, India: Elsevier.

Parnes R. 2013. Soil fertility a guide to organic and inorganic soil amendments. Available at: https://soilandhealth.org/wp-content/uploads/01aglibrary/010189.fertle%20soil%20revise.pdf. [accessed 2019 March 3].

Rondon MA, Lehmann J, Ramírez J, Hurtado M. 2007. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol Fertil Soil. 43(6):699–708. doi:10.1007/s00374-006-0152-z.

Schnell RW, Vietor DM, Provin TL, Munster CL, Capared S. 2012. Capacity of biochar application to maintain energy crop productivity: Soil chemistry, sorghum growth, and runoff water quality effects. J Environ Qual. 41(4):1044–1051. doi:10.2134/jeq2011.0077.

Selvakumar G, Thamizhiniyan P. 2011. The effect of the arbuscular mycorrhizal ( AM ) Fungus glomus intraradices on the growth and yield of chilli (Capsicum annuum L .) under salinity stress. World Appl Sci J. 14(8):1209–1214.

Selvakumar G, Yi PH, Lee SE, Shagol CC, Han SG, Sa T, Chung BN. 2018. Effects of long-term subcultured Arbuscular mycorrhizal fungi on red pepper plant growth and soil glomalin content. Mycobiology. 46(2):122–128. doi:10.1080/12298093.2018.1461315.

Sharma MP, Sharma SK, Prasad RD, Pal KK, Dey R. 2014. Application of arbuscular mycorrhizal fungi in production of annual oilseed crops. In: Solaiman Z, Abbott LK, Ajit V, editors. Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration, Soil Biology. Verlag Berlin Heidelberg: Springer; p. 1–15.

Simanjuntak LHC, Harsono P, Hasanudin H. 2017. Kajian pertumbuhan dan hasil cabai rawit terhadap berbagai dosis pupuk hayati dan konsentrasi Indol Acetic Acid (IAA) [Study on the growth and yield of chili on various doses of biofertilizers and concentration of Indol Acetic Acid (IAA)]. Akta Agrosia. 20(1):9-16. doi:10.31186/aa.20.1.9-16.

Soil Research Center (BPT). 2009. Petunjuk teknis analisis kimia tanah, tanaman, air, dan pupuk. 2nd ed. [Technical guidance for soil, plant, water and fertilizer chemical analysis 2nd edition]. Bogor: Soil Research Center.

Surdianto Y, Sutrisna N, Basuno S. 2015. Panduan teknis cara membuat arang sekam padi [Technical guide on how to make rice husk charcoal]. West Java, Indonesia: Ministry of Agriculture. Available at: http://repository.pertanian.go.id/handle/123456789/6751. [accessed 2020 March 10].

Thioub M, Ewusi-Mensah N, Sarkodie-Addo J, and Adjei-Gyapong T. 2019. Soil & tillage research Arbuscular mycorrhizal fungi inoculation enhances phosphorus use efficiency and soybean productivity on a Haplic Acrisol. Soil Till Res. 192:174–186. doi:10.1016/j.still.2019.05.001.

van Zwieten L, Kimber S, Morris S, Chan KY, Downie A, Rust J, Joseph S, Cowie A. 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil. 327(1):235–246. doi:10.1007/s11104-009-0050-x.

Wang W, Shi J, Xie Q, Jiang Y, Yu N, Wang E. 2017. Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Mol Plant. 10(9):1147–1158. doi:10.1016/j.molp.2017.07.012.

Wubet T, Kottke I, Teketay D, Oberwinkler F. 2003. Mycorrhizal status of indigenous trees in dry Afromontane forests of Ethiopia. Forest Ecol. Manag. 179(1–3): 387–399. doi:10.1016/S0378-1127(02)00546-7.

Xiao TJ, Yang QS, Ran W, Su G, Shen QR. 2010. Effect of inoculation with arbuscular mycorrhizal fungus on nitrogen and phosphorus utilization in upland rice-mungbean intercropping system. Agric Sci China. 9(4):528-535. doi: 10.1016/S1671-2927(09)60126-7.

Zhang Z, Mallik A, Zhang J, Huang Y, Zhou L. 2019. Effects of arbuscular mycorrhizal fungi on inoculated seedling growth and rhizosphere soil aggregates. Soil Till Res. 194:104340. doi:10.1016/j.still.2019.104340.




DOI: http://dx.doi.org/10.5400/jts.2021.v26i2.75-86

Refbacks

  • There are currently no refbacks.


INDEXING SITE

University of OxfordColumbia University LibraryStanford Crossref EBSCO

DOAJ

 

  


Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.