Jurnal TANAH TROPIKA (Journal of Tropical Soils), Vol 22, No 2

Font Size:  Small  Medium  Large

Phosphorus Extraction from Soil Constituents in Equilibrium and Kinetics Applying Bray P-1, Mehlich-1, and Olsen Solutions

Jamalam Lumbanraja, sri mulyani, Muhajir Utomo, . Sarno

Abstract


Phosphorus (P) which is an essential macro nutrient is one of the most limiting factors for plant growth in humid tropical soils. There are several methods have been applied to estimate the quantity of available  P  in soil constituents in relation to the plant production.   The method solutions of Bray P-1, Mehlich-1, and Olsen are the most frequently used in equilibrium condition  to estimate the  available P in the soil constituents.  But each of  the methods can give some different values that may not describe the availability of P. Therefore, it is necessary to conduct a laboratory experiments to compare the three solutions in equilibrium and kinetics for  P release from soil colloids as a basic data for the future relating to plant productions. The objectives of this study is to compare the quantity of P release in equilibrium and kinetics using P Bray P-1, Mehlich-1, and Olsen solutions and  rate constant (k) of P release from soil colloids using the three solutions of five soil constituents or treatments: (1) Soil (100% soil), (2) P-rock (100% of  phosphate rock), (3) compost (100% of chicken manure compost), (4) soil+P-rock (75% of soil + 25% of  phosphate rock), and (5) soil+P-rock+compost (50% of soil + 25% of phosphate rock + 25% of chicken manure compost) which  were extracted in triplicate. The results indicated that the quantities of   extracted  P employing equilibrium conditions in all treatments are significantly lower compare to that of kinetics . The results also showed that Mehlich-1 solution was the most power full to extract P from soil constituents  following Bray P-1 solution and the least was Olsen solution, except in the soil+P-rock+compost treatment where the quantity of extracted P using Mehlich-1 solution was still the highest  then following that of P extracted by Olsen solution and the lowest was Bray P-1 solution both in equilibrium and kinetics conditions. The highest rate constants (k) of the reaction in all treatments were found  in  using Melich-1 solution for desorbed P following that of using Bray P-1 solution and the least was that of  using Olsen solution. 

Keywords: Available phosphorus, compost, equilibrium, kinetic, phosphate rock, P extraction solutions, rate constant, soil


References


Arai, Y.,  and D.L. Sparks. 2007.  Phosphate reaction dynamics in soils and soil minerals: a multiscale approach.  Adv Agron. 94: 135–179
Babana, A.H., and H. Antoun.  2006.  Effect of Tilemsi phosphate rock-solubilizing microorganism on phosphorus uptake and yield of field-grown wheat (Triticum aestivum L.) in Mali. Plant Soil 287: 51–58
Bray, R.H., and L.T. Kurtz. 1945. Determination of total organic and available forms of phosphate in soils. Soil Sci. 59:39-45
Devau, N., E. Le Cadre, P. Hinsinger, and F. Gérard. 2010.  A mechanistic model for understanding root-induced chemical changes controlling phosphorus availability. Ann Bot (Lond) 105: 1183–1197
Evangelou, V.P. 1998. Environmental Soil and Water Chemistry: Principle and Application, John Wiley & Sons Inc. New York 564 pp
Gartley, K.L., J.T. Sims, C.T. Olsen, and P. Chu.  2002.  Comparison of soil test extractants used in mid-Atlantic United States.  Commun. Soil Sci. Plant Anal. 33(5&6): 873-895.
Koopmans, G. F., W. J. Chardon, P. de Willigen, and W. H. van Riemsdijk. 2004. Phosphorus desorption dynamics in soil and the link to a dynamic concept of bioavailability.  J. of Env. Quality,  33 (4):1393–1402.
Lindsay, W.L., P.L.G. Vlek, and S.H. Chien. 1989.  Phosphate  minerals.   In J.B. Dixon and S.B  Weed (Editors),  Minerals in Soil Environment, Ed 2. Soil Science Society of America, Madison, WI, pp 1089–1130
Lookman, R., D. Freese, R. Merckx, K. Vlassak, and W. H. van Riemsdijk. 1995. Long-term kinetics of phosphate release from soil. Environmental Sci. and Technology, 29 (6):1569–1575.
Lookman, R., K. Jansen, R. Merckx, and  K. Vlassak. 1996. Relationship between soil properties and phosphate saturation parameters a transect study in northern Belgium. Geoderma,  69 (3-4): 265–274.
Lumbanraja, J.  1995.  Sorption behavior of phosphorus in acid soil of Ultisols: Effects of phosphorus sources and urea (in Indonesian). J. Pen. Pengb. Wil. Lahan Kering 15:1-17
Lumbanraja, J.,T. Tadano, M. Ninaki, K. Oya, T. Yoshida, M Utomo,  and  A.D.  Sitorus.  1981.   Nutritional  limitation factors  for rice and corn growth on Podsolic Soils in Lampung  Province.  In Y. Asada (Ed.)  Cooperation  Research between DGHE and JSPS. Ehime University, Japan. p:118-124
Lumbanraja, J.,T. Tadano, M. Ninaki, K. Oya, T. Yoshida, M.Utomo,  and  A.D.  Sitorus. 1982.  The  effect  of  nitrogen phosphorus,  and potassium fertilizers on cassava growth  on “Bandarjaya Podsolic Soil” and “Gedungmeneng Latosol Soil”. In  Y.  Asada (Ed.) Cooperation Research  between  DGHE  and JSPS. Ehime University, Japan. p:112-122
Lumbanraja, J., and. M. Utomo.  1996.  Phosphorus availability for rice and P-sorption behavior in soil affected by P-source and N-fertilizer in an acid soil of Sumatera. IVth  International Symposium  on Plant-Soil  Interactions at Low pH.  Brazil, March 17-24.
Lumbanraja, J.,  M. Utomo, and B. Sitio.  1995.  Sorption characteristics of soil phosphorus in the three different  tillages and nitrogen fertilization in the experimental plot of a long-term experiment plots (in Indonesian). In M. Utomo, I.H. Utomo, F.X. Susilo, Lumbanraja J. (ed.) Proceedings of the Fifth National Seminar of Conservation Tillage. Bandar Lampung Indonesia p:69-77
Lumbanraja, J., S. Djuniwati,  and M. Murad.  1994.  The influence of particle size and the type of iron concretions and  compost on the  availability of phosphorus in the clay fraction of  an Ultisols and an Alfisols (in Indonesian). J. Pen. Pengb. Wil. Lahan Kering 14:12-27
Lynch, J. P. 2011. Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiology, 156 (3):1041–1049.
Maguire, R. O.,  and J. T. Sims. 2002. Soil testing to predict phosphorus leaching,  Journal of Environmental Quality, 31 (5):1601–1609.
Mehlich,  A.  1972.  Uniformity of expressing soil test results.  A case for calculating results on a volume basis.  Commun. Soil Sci. Plant Anal. 3(5): 417-424.
Meetei, W.H., H.S. Athokpam, R.K.K. Singh, L. Watham, N. Chongtham, K.N. Devi, N.B. Singh, K.L. Singh, and N.J. Singh. 2015. Evaluation of some soil test methods in acid soils for available phosphorus for soybean of Imphal East Distric, Manipur, India. Afr. J. Agric. Res  10(8):767-771. 
Morel, C., N. Ziadi, and A. Messiga. 2014. Modeling of phosphorus dynamics in contrasting agroecosystems using long-term field experiments. Canadian J. of Soil Sci. 94 (3):377–387
Murphy, J.,  and J. P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters.  Analytica Chimica Acta,  27:31–36.
Nafiu, A. 2009. Effects of soil properties on the kinetics of desorption of phosphate from Alfisols by anion-exchange resins. J. of Plant Nutr. and Soil Sci.172 (1):101–107..
Oelkers, E.H., and E. Valsami-Jones. 2008.  Phosphate mineral reactivity and global Sustainability. Elements 4: 83–87
Olsen, S.R., C.V. Cole, F.S. Watanabe, and L.A. Dean. 1954.  Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Cir. No. 939 USDA Washington, DC p. 19.
Pavlatou, A.,  and N. A. Polyzopoulos. 1988. The role of diffusion in the kinetics of phosphate desorption: the relevance of the Elovich equation. J. of Soil Sci.39 (3):425–436.
Rouached, H, A.B. Arpat,  and Y. Poirier. 2010.  Regulation of phosphate starvation responses in plants: signaling players and cross-talks. Mol. Plant 3: 288–299
Schachtman, D. P., R. J. Reid, and S. M. Ayling. 1998. Phosphorus uptake by plants: from soil to cell.  Plant Physiology, 116 (2):447–453.
Schoumans, O. F. 2013. Description of the phosphorus sorption and desorption processes in lowland peaty clay soils. Soil Science, 178 (6):291–300.
Singh, B. R., T. Krogstad, Y. S. Shivay, B. G. Shivakumar, and M. Bakkegard. 2005. Phosphorus fractionation and sorption in P-enriched soils of Norway. Nutrient Cycling in Agroecosystems,  73 (2-3): 245–256.
Soil Research Institute. 2005. Technical Guidelines for Chemical Analysis of Soil, Plant, Water, and Fertilizer. Soil Research Institute. Bogor. 136 pp
Sparks, D.L. 1989. A Kinetics of Soil Chemical Processes.  Academic Press. INC. 210 ps.
Tiesen, H., and J.O. Moir. 2008. Characterization of Avaolable P by Sequantial Extraction. In M.R. Carter and E.G. Gregorich. Soil sampling and Methods of Analysis. 2nd Edition. Canadian Soc. of Soil Sci.  :293-306
Thom, W.O dan Utomo, M. 1991.  Laboratory Management and Soil and Plant Analysis Methods (in Indonesian).   . University of  Lampung. 85 pp.
Tipping, E., S. Benham, and J. F. Boyle. 2014. Atmospheric deposition of phosphorus to land and freshwater. Environmental Science: Processes & Impacts,  16 (7):1608–1617.
Torrent, J.,  and A. Delgado. 2001. Using phosphorus concentration in the soil solution to predict phosphorus desorption to water. J.  of Env. Quality, 30 (5):1829–1835..
van der Zee, S. E. A. T. M.  and W. H. van Riemsdijk. 1986. Sorption kinetics and transport of phosphate in sandy soil. Geoderma, 38 (1–4):293–309.
van der Zee, S. E. A. T. M. and W. H. van Riemsdijk. 1988. Model for long-term phosphate reaction kinetics in soil.  J. of Env.  Quality, 17 (1):35–41.
Vetterlein, D., C. Bergmann, and R. F. Hüttl. 1999. Phosphorus availability in different types of open-cast mine spoil and the potential impact of organic matter application.  Plant and Soil, 213 (1-2): 189–194.
Wahida, A., A. Fahmi, and A. Jamberi. 2007. Effect of Phosphate Rock Fertilizer from Morocco on the Rice Growth in Land acid sulfate (in Indonesian).   J  of Tropical Soil 12(2): 85-90.
Wolf, A.M., and D.E. Baker.  1985.  Comparison of soil test phosphorus by Olsen, Bray-P1, Mehlich-1, and Mehlich-3 methods.  Commun. in Soil Sci. Plant Anal. 16: 467-484.
Ziadi, N., R. R. Simard, T. S. Tran, and G. Allard. 2001. Soil-available phosphorus as evaluated by desorption techniques and chemical extractions.  Canadian J.  of Soil Sc. 81 (2):167–174.

Full Text: PDF

Refbacks

  • There are currently no refbacks.


University of OxfordCOPACColumbia University LibraryStanford Crossref EBSCO

DOAJ

 

Print ISSN 0852-257X, Online ISSN 2086-6682